




MC 
Microsoft Certified  

Azure Data Fundamentals 
Study Guide





MC 
Microsoft Certified  

Azure Data Fundamentals 
Study Guide

EXAM DP-900

Jake Switzer



Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada and the United Kingdom.

978-1-119-85583-5
978-1-119-85585-9 (ebk.)
978-1-119-85584-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under 
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the 
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,  
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at  
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, 
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at 
www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with 
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including 
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or 
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work 
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional 
services. If professional assistance is required, the services of a competent professional person should be sought. 
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or 
Website is referred to in this work as a citation and/or a potential source of further information does not mean that 
the author or the publisher endorses the information the organization or Website may provide or recommendations 
it may make. Further, readers should be aware the Internet Websites listed in this work may have changed or 
disappeared between when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer 
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax 
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be 
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2021950194

Trademarks: WILEY, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley 
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written 
permission. Microsoft and Azure are registered trademarks of Microsoft Corporation. All other trademarks are the 
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned 
in this book. MC Microsoft Certified Azure Data Fundamentals Study Guide is an independent publication and is 
neither affiliated with, nor authorized, sponsored, or approved by, Microsoft Corporation.

Cover image: ©Jeremy Woodhouse/Getty Images

Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


Acknowledgments
While I have been able to work on several exciting opportunities in my professional career 
at Microsoft, including delivering live presentations and working with some of the biggest 
brand name organizations the world, this was my first time tackling a technical book. This 
project was both intense and incredibly rewarding, as it allowed me to share what I believe 
are the fundamental skills anyone will need to start a successful career with the Microsoft 
data stack. However, this would not have been possible without the support from the follow-
ing people.

First and foremost, I would like to thank my wife, Kaiya, for her love and support during 
the writing of this book. It is from her that I gather inspiration to be my best self every day. 
Thanks to my mom and dad for their unrelenting support and helping me make the most of 
every opportunity.

I would also like to thank my colleague Susanne Tedrick, author of WOMEN OF 
COLOR IN TECH: A Blueprint for Inspiring and Mentoring the Next Generation of Tech-
nology Innovators, (Wiley, 2020) for reaching out to me when this opportunity became 
available and to Kenyon Brown, the acquisitions editor, for helping me get it off the ground. 
Many thanks to Ayman El-Ghazali, the technical editor for this book and a mentor of mine 
throughout my time at Microsoft. Special thanks to Jon Flynn and Tash Tahir, two of my 
colleagues at Microsoft, for taking the time out of their busy schedule to review the content.

Finally, thank you to the entire team who made this book come together, including 
David Clark (project editor), Pete Gaughan (managing editor), Judy Flynn (copyeditor), and 
Barath Kumar Rajasekaran, who polished the rough content and made sure the project kept 
moving. Thanks also to all of the people who work behind the scenes with the production of 
this book.





About the Author
Jake Switzer has been using technology to build data-oriented solutions since his time as 
a student at the University of Alabama. He has held delivery and advisory roles at Micro-
soft for over nine years, including as a consultant and cloud solution architect. Jake has 
designed and developed data platform and advanced analytics solutions for an assortment 
of Microsoft enterprise customers to ensure that their specific business needs were met. Over 
the last few years, he has focused on advising Microsoft’s sports customers how to design 
and build modern data solutions in Azure. His responsibilities in this role include providing 
architecture guidance, building proof of concepts, aiding in production deployments, and 
troubleshooting support issues. He is well-versed in a variety of data engineering technol-
ogies and frameworks such as SQL Server, Apache Spark, Azure Data Factory, Azure Data-
bricks, Azure Synapse Analytics, and Power BI. In his free time, he enjoys spending time 
outdoors hiking and can be found most weekends cooking and sharing a scotch with  
his wife.





About the Technical Editor
Ayman El-Ghazali is a seasoned data and analytics professional, being in the industry since 
2006. His passion for technology started when he was just a boy playing DOS games on 
his father’s computer. From there, he pursued studies in computer science while attending 
high school in Egypt and continued his journey to earning both a bachelor of science and a 
master of science in Information Systems from Drexel University. On a personal note, Ayman 
enjoys playing and watching soccer, training in martial arts (mostly Brazilian Jiu Jitsu), and 
enjoying time with his wife, kids, friends, and family. 

For more information about his background and his work, please visit his blog  
thesqlpro.com or linkedin.com/in/aymansqldba.





Contents at a Glance
Introduction	 xvii

Assessment Test	 xxvi

Answers to the Assessment Test	 xxxix

Chapter 1	 Core Data Concepts	 1

Chapter 2	 Relational Databases in Azure	 49

Chapter 3	 Nonrelational Databases in Azure	 139

Chapter 4	 File, Object, and Data Lake Storage	 177

Chapter 5	 Modern Data Warehouses in Azure	 225

Chapter 6	 Reporting with Power BI	 301

Appendix	 Answers to the Review Questions	 329

Index	 339





Contents
Introduction	 xvii

Assessment Test	 xxvi

Answers to the Assessment Test	 xxxix

Chapter 1	 Core Data Concepts	 1

Describe Types of Core Data Workloads	 2
Data Value	 3
Data Volume	 10
Data Variety	 11
Data Velocity	 14

Describe Data Analytics Core Concepts	 21
Data Processing Techniques	 21
Describe Analytics Techniques	 32
Describe Data Visualization Techniques	 34

Summary	 40
Exam Essentials	 41
Review Questions	 44

Chapter 2	 Relational Databases in Azure	 49

Relational Database Features	 51
Relational Database Design Considerations	 51

Relational Database Offerings in Azure	 61
Azure SQL	 63
Azure Synapse Analytics Dedicated SQL Pools	 90
Open-Source Databases in Azure	 92

Management Tasks for Relational Databases in Azure	 96
Deployment Scripting and Automation	 96
Migrating to Azure SQL	 105
Database Security	 106
Common Connectivity Issues	 113
Management Tools	 115

Query Techniques for SQL	 119
DDL vs. DML Commands	 120
Query Relational Data in Azure SQL, MySQL, MariaDB,  

and PostgreSQL	 125
Summary	 129
Exam Essentials	 130
Review Questions	 132



xiv  Contents

Chapter 3	 Nonrelational Databases in Azure	 139

Nonrelational Database Features	 140
Key-Value Store	 141
Document Database	 142
Columnar Database	 143
Graph Database	 144

Azure Cosmos DB	 145
High Availability	 146
Request Units	 148
Azure Cosmos DB APIs	 150

Management Tasks for Azure Cosmos DB	 154
Deployment Options	 154
Azure Cosmos DB Security	 165
Azure Cosmos DB Common Connectivity Issues	 167
Management Tools	 169

Summary	 170
Exam Essentials	 171
Review Questions	 174

Chapter 4	 File, Object, and Data Lake Storage	 177

File and Object Storage Features	 178
Azure Storage	 179

Performance Tiers	 180
Data Redundancy	 181
Deploying through the Azure Portal	 182
Azure Storage Services	 187

Management Tasks for Azure Storage	 198
Deployment Scripting and Automation	 198
Azure Storage Security	 201
Azure Storage Common Connectivity Issues	 212
Management Tools	 213

Summary	 217
Exam Essentials	 218
Review Questions	 221

Chapter 5	 Modern Data Warehouses in Azure	 225

Analytical Workload Features	 226
Transactional vs. Analytical Workloads	 226
Data Processing Techniques	 229

Modern Data Warehouse Components	 233
Data Modeling Best Practices for Data Warehouses	 233
Azure Services for Modern Data Warehouses	 234

End-to-End Analytics with Azure Synapse Analytics	 268
Deploying an Azure Synapse Analytics Workspace	 270



Contents  xv

Navigating the Synapse Studio UI	 271
Dedicated SQL Pools	 275
Serverless SQL Pools	 287

Summary	 292
Exam Essentials	 293
Review Questions	 295

Chapter 6	 Reporting with Power BI	 301

Power BI at a Glance	 302
Working with Power BI	 303

Summary	 324
Exam Essentials	 325
Review Questions	 326

Appendix	 Answers to the Review Questions	 329

Chapter 1: Core Data Concepts	 330
Chapter 2: Relational Databases in Azure	 331
Chapter 3: Nonrelational Databases in Azure	 333
Chapter 4: File, Object, and Data Lake Storage	 334
Chapter 5: Modern Data Warehouses in Azure	 335
Chapter 6: Reporting with Power BI	 337

Index	 339





Introduction
Hello! I am Jake Switzer, and as a data & advanced analytics cloud solution architect at 
Microsoft, I work with several Microsoft customers on designing and implementing data 
solutions in Azure. These questions vary day-to-day from very deep technical questions to 
questions like “What is the right data processing solution for a new data feed that I want 
to analyze?” or “Why should I move from my on-premises SQL Server solution to a cloud-
based data solution?” While these questions vary in difficulty and specificity, they can all be 
traced back to one common topic: Azure data fundamentals.

If you are picking up this book for the first time, then I assume you are starting your 
journey as a data practitioner in Azure. The content in this book will not only prepare you 
for the DP-900 Microsoft Certified Azure Data Fundamentals exam, it will also give you a 
broad understanding of data solutions in Azure. This book is intended to help you under-
stand the different approaches to storing data in Azure as well as how you can turn raw data 
into information used to make valuable business decisions. While this exam will not dive 
deep into specific technical features of the products listed in this book, you will need a broad 
understanding of these technologies, which will serve as a starting point for becoming more 
technical with each technology if you so choose.

Who Should Read This Book?
This book is appropriate for anyone who wants to understand Azure data fundamentals in 
a broad sense and prepare for the DP-900 exam. Technical individuals such as data engi-
neers, data scientists, and DBAs who work with data can greatly benefit from Azure data 
fundamentals training. This will help them transition their existing skills, whether they are in 
on-premises data solutions or solutions in other cloud platforms, to a career in Azure. Along 
with understanding highly technical roles, this book can also help analysts and project man-
agers understand how to use technologies such as Power BI and other Azure data services to 
help them in their roles. Technical sellers will also find value from this book as they will gain 
the necessary knowledge for sales discussions where Azure data services are critical to win-
ning business with a potential customer.

What’s Included in the Book?
This book consists of six chapters plus supplementary information: a glossary, this introduc-
tion, flashcards, and the assessment test after the introduction. The chapters are organized 
as follows:

■■ Chapter 1, “Core Data Concepts,” covers the foundations of data storage and analysis 
techniques. It defines the different types of data, data processing patterns, and categories 
of data analytics.



xviii  Introduction

■■ Chapter 2, “Relational Databases in Azure,” covers the different relational database 
options in Azure and when to use which one. This includes IaaS and PaaS offerings 
such as SQL Server in a VM, Azure SQL Database, and Azure SQL Managed Instance. 
Chapter 2 defines best practices for deploying, migrating to, securing, managing, and 
querying relational databases in Azure. This chapter also includes the open-source 
relational database PaaS options that are available in Azure.

■■ Chapter 3, “Nonrelational Databases in Azure,” covers the different types of NoSQL 
databases and how to implement them with Azure Cosmos DB. This chapter defines the 
different Azure Cosmos DB APIs and explores how Azure Cosmos DB provides security, 
high availability, and consistency for NoSQL data.

■■ Chapter 4, “File, Object, and Data Lake Storage,” explores the file and object storage 
options in Azure Storage, including Azure Files, Azure Blob storage, and Azure Data 
Lake Storage Gen2 (ADLS). This chapter covers deployment, security, and management 
options for Azure Storage services.

■■ Chapter 5, “Modern Data Warehouses in Azure,” explores common data processing pat-
terns and features used by analytical workloads. This chapter covers several common 
Azure services that are used to build modern data warehouses, such as Azure HDInsight, 
Azure Databricks, Azure Data Factory, and Azure Synapse Analytics.

■■ Chapter 6, “Reporting with Power BI,” explores the different components of Power BI, 
such as Power BI Desktop, Power BI service, and Power BI Report Builder. This chapter 
covers the common steps used in a Power BI workflow and the different aspects of inter-
active reports, paginated reports, and dashboards.

Each chapter begins with a list of the objectives that are covered in that chapter. The book 
does not cover the objectives in order, so you should not be alarmed at some of the odd 
ordering of the objectives within the book. At the end of the chapter, you will find the fol-
lowing elements that you can use to prepare for the exam:

■■ Exam Essentials—This section summarizes the most important information that 
was covered in the chapter. You should be able to answer questions relevant to this 
information.

■■ Review Questions—Each chapter concludes with review questions. You should answer 
these questions and check your answers against the ones provided after the questions. If 
you can’t answer at least 80 percent of these questions correctly, go back and review the 
chapter, or at least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing elements included 
in this book are not derived from the exam questions, so do not memorize 
the answers to these questions and assume that doing so will enable you 
to pass the exam. You should learn the underlying topic, as described in the 
text of the book. This will let you answer the questions provided with this 
book and pass the exam. Learning the underlying topic is also the approach 
that will serve you best in the workplace.



Introduction  xix

To get the most out of this book, you should read each chapter from start to finish and 
then check your memory and understanding with the end-of-chapter elements. Even if you 
are already familiar with a topic, you should skim the chapter; Azure data services are 
complex enough that there are often multiple ways to accomplish a task, so you may learn 
something even if you are already competent in an area.

Recommended Home Lab Setup
There are multiple objectives in the DP-900 exam that will require you to download and 
install different desktop tools. These tools are described in their respective chapters, with 
instructions on where to download them and how to use them.

In addition to these tools, it is important to have access to a Microsoft Azure 
subscription. Because Microsoft Azure is a cloud-based offering, you only need a computer 
with a connection to the Internet to set up a free Azure subscription for experimentation. 
You can create a free Azure subscription by going to https://azure.microsoft.com/
en-us/free and clicking Start Free. You will need to log in with a Microsoft account, 
such as a Hotmail, Live, or Outlook account. The Azure website will step you through the 
process of signing up for your free subscription. While you will need to provide contact 
information and a credit card number, Microsoft will not charge the credit card unless you 
upgrade to a paid subscription.

Like all exams, the Azure Data Fundamentals certification exam from 
Microsoft is updated periodically and may eventually be retired or 
replaced. In the event Microsoft is no longer offering this exam, the old 
editions of our books and online tools may be retired. If you have pur-
chased this book after the exam was retired or are attempting to register 
in the Sybex online learning environment after the exam was retired, 
please know that we make no guarantees that this exam’s online Sybex 
tools will be available once the exam is no longer available.

Interactive Online Learning 
Environment and Test Bank
We’ve put together some really great online tools to help you pass the MC Microsoft Cer-
tified Azure Data Fundamentals exam. The interactive online learning environment that 
accompanies this study guide provides a test bank and study tools to help you prepare for 
the exam. By using these tools, you can dramatically increase your chances of passing the 
exam on your first try.

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free


xx  Introduction

The test bank includes the following:

Sample Tests   Many sample tests are provided throughout this book and online, 
including the assessment test, which you’ll find at the end of this introduction, and the 
chapter review questions at the end of each chapter. In addition, there is a bonus prac-
tice exam. Use all of these practice questions to test your knowledge of the material. The 
online test bank runs on multiple devices.

Flashcards   The online text bank includes more than 100 flashcards specifically writ-
ten to hit you hard, so don’t get discouraged if you don’t ace your way through them 
at first! They’re there to ensure that you’re really ready for the exam. And no worries—
armed with the assessment test, review questions, practice exam, and flashcards, you’ll 
be more than prepared when exam day comes! Questions are provided in digital flash-
card format (a question followed by a single correct answer). You can use the flashcards 
to reinforce your learning and provide last-minute test prep before the exam.

Other Study Tools   A glossary of key terms from this book and their definitions is 
available as a fully searchable PDF.

Go to www.wiley.com/go/sybextestprep to register and gain access 
to this interactive online learning environment and test bank with study 
tools.

DP-900 Exam Objectives
MC Microsoft Certified Azure Data Fundamentals Study Guide: Exam DP-900 has been 
written to cover every exam objective at a level appropriate to its exam weighting. The fol-
lowing table provides a breakdown of this book’s exam coverage, showing you the weight of 
each section and the chapter where each objective or subobjective is covered:

Subject Area % of Exam

Describe core data concepts 15–20%

Describe how to work with relational data on Azure 25–30%

Describe how to work with nonrelational data on Azure 25–30%

Describe an analytics workload on Azure 25–30%

Total 100%

http://www.wiley.com/go/sybextestprep


Introduction  xxi

Domain 1: Describe Core Data 
Components

Subdomain 1a: Describe types of core data workloads

Exam Objective Chapter

1-1 Describe batch data 1

1-2 Describe streaming data 1

1-3 Describe the difference between batch and streaming data 1

1-4 Describe the characteristics of relational data 1

Subdomain 1b: Describe data analytics core concepts

Exam Objective Chapter

1-5 Describe data visualization (e.g., visualization, reporting, 
business intelligence (BI))

1

1-6 Describe basic chart types such as bar charts and pie charts 1

1-7 Describe analytics techniques (e.g., descriptive, diagnostic,  
predictive, prescriptive, cognitive)

1

1-8 Describe ELT and ETL processing 1

1-9 Describe the concepts of data processing 1



xxii  Introduction

Domain 2: Describe How to Work 
with Relational Data on Azure

Subdomain 2a: Describe relational data workloads

Exam Objective Chapter

2-1 Identify the right data offering for a relational workload 2

2-2 Describe relational data structures (e.g., tables, index, views) 2

Subdomain 2b: Describe relational Azure data services

Exam Objective Chapter

2-3 Describe and compare PaaS, IaaS, and SaaS solutions 2

2-4 Describe Azure SQL database services including Azure SQL 
Database, Azure SQL Managed Instance, and SQL Server on Azure 
Virtual Machine

2

2-5 Describe Azure Synapse Analytics 2

2-6 Describe Azure Database for PostgreSQL, Azure Database for  
MariaDB, and Azure Database for MySQL

2

Subdomain 2c: Identify basic management tasks 
for relational data

Exam Objective Chapter

2-7 Describe provisioning and deployment of relational data services 2

2-8 Describe method for deployment including the Azure portal, 
Azure Resource Manager templates, Azure PowerShell, and the Azure 
command-line interface (CLI)

2

2-9 Identify data security components (e.g., firewall, authentication) 2

2-10 Identify basic connectivity issues (e.g., accessing from on-premises, 
access with Azure VNETs, access from Internet, authentication, 
firewalls)

2

2-11 Identify query tools (e.g., Azure Data Studio, SQL Server 
Management Studio, sqlcmd utility, etc.)

2



Introduction  xxiii

Subdomain 2d: Describe query techniques for data using 
SQL language

Exam Objective Chapter

2-12 Compare Data Definition Language (DDL) versus Data 
Manipulation Language (DML)

2

2-13 Query relational data in Azure SQL Database, Azure  
Database for PostgreSQL, and Azure Database for MySQL

2

Domain 3: Describe How to Work 
with Nonrelational Data on Azure

Subdomain 3a: Describe nonrelational data workloads

Exam Objective Chapter

3-1 Describe the characteristics of nonrelational data 3

3-2 Describe the types of nonrelational and NoSQL data 3

3-3 Recommend the correct data store 3

3-4 Determine when to use nonrelational data 3

Subdomain 3b: Describe nonrelational data 
offerings on Azure

Exam Objective Chapter

3-5 Identify Azure data services for nonrelational workloads 3

3-6 Describe Azure Cosmos DB APIs 3

3-7 Describe Azure Table storage 3

3-8 Describe Azure Blob storage 4

3-9 Describe Azure File storage 4



xxiv  Introduction

Subdomain 3c: Identify basic management tasks for  
nonrelational data

Exam Objective Chapter

3-10 Describe provisioning and deployment of nonrelational 
data services

3, 4

3-11 Describe method for deployment including the Azure portal, 
Azure Resource Manager templates, Azure PowerShell, and the 
Azure command-line interface (CLI)

3, 4

3-12 Identify data security components (e.g., firewall, authentica-
tion, encryption)

3, 4

3-13 Identify basic connectivity issues (e.g., accessing from on-
premises, access with Azure VNETs, access from Internet, authenti-
cation, firewalls)

3, 4

3-14 Identify management tools for nonrelational data 3, 4

Domain 4: Describe an Analytics 
Workload on Azure

Subdomain 4a: Describe analytics workloads

Exam Objective Chapter

4-1 Describe transactional workloads 5

4-2 Describe the difference between a transactional and an ana-
lytics workload

5

4-3 Describe the difference between batch and real time 5

4-4 Describe data warehousing workloads 5

4-5 Determine when a data warehouse solution is needed 5



Introduction  xxv

Subdomain 4b: Describe the components of a modern 
data warehouse

Exam Objective Chapter

4-6 Describe Azure data services for modern data warehousing 
such as Azure Data Lake, Azure Synapse Analytics, Azure Data-
bricks, and Azure HDInsight

5

4-7 Describe modern data warehousing architecture 
and workload

5

Subdomain 4c: Describe data ingestion and 
processing on Azure

Exam Objective Chapter

4-8 Describe common practices for data loading 5

4-9 Describe the components of Azure Data Factory (e.g., 
pipeline, activities, etc.)

5

4-10 Describe data processing options (e.g., Azure HDInsight, 
Azure Databricks Azure Synapse Analytics, Azure Data Factory)

5

Subdomain 4d: Describe data visualization in 
Microsoft Power BI

Exam Objective Chapter

4-11 Describe the role of paginated reporting 6

4-12 Describe the role of interactive reports 6

4-13 Describe the role of dashboards 6

4-14 Describe the workflow in Power BI 6

Exam domains and objectives are subject to change at any time without 
prior notice and at Microsoft’s sole discretion. Please visit Microsoft’s web-
site for the most current information.



xxvi  Assessment Test

Assessment Test
1.	 Which of the four Vs of big data is related to the speed at which data is processed?

A.	 Volume

B.	 Velocity

C.	 Value

D.	 Variety

2.	 Which of the following components is not included in the Lambda architecture 
design pattern?

A.	 Batch layer

B.	 Serving layer

C.	 Speed layer

D.	 Transactional layer

3.	 Which of the following transactional database properties ensures that once a transaction is 
committed, it will remain committed even if there is a system failure?

A.	 Consistency

B.	 Atomicity

C.	 Durability

D.	 Resilience

4.	 Which of the following technologies can be used to orchestrate the flow of data in a data 
processing pipeline?

A.	 Azure SQL Database

B.	 Azure Data Factory

C.	 Azure Data Lake Storage Gen2

D.	 Azure Synapse Analytics dedicated SQL pools

5.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? Azure Synapse Analytics dedicated SQL pools 
is an example of a relational database.

A.	 Nonrelational

B.	 NoSQL

C.	 Object

D.	 No change needed



Assessment Test  xxvii

6.	 Which of the following is not a core component of a relational database?

A.	 Document

B.	 Index

C.	 Table

D.	 View

7.	 Which of the following is the most optimal solution for storing images, telemetry data, and 
data that is used for distributed analytics solutions?

A.	 Azure SQL Database

B.	 Azure Blob Storage

C.	 Azure Cosmos DB Gremlin API

D.	 Azure Files

8.	 What data processing approach is typically used to process data for traditional business intel-
ligence solutions?

A.	 ELT

B.	 Batch

C.	 Streaming

D.	 ETL

9.	 Data that is transformed so that it meets the schema requirements of a destination table is an 
example of what type of data processing strategy?

A.	 Schema-on-upload

B.	 Schema-on-read

C.	 Schema-on-write

D.	 Analytical processing

10.	 What technology in Azure allows data engineers to build data processing pipelines with a 
graphical user interface?

A.	 Azure Data Factory mapping data flows

B.	 SSIS

C.	 Azure Databricks

D.	 Azure Logic Apps

11.	 Which of the following methods is used to manage the order in which data processing activ-
ities are executed?

A.	 Data flow

B.	 Management flow

C.	 Control flow

D.	 Orchestration flow



xxviii  Assessment Test

12.	 You have been tasked with taking data stored as parquet files in Azure Data Lake Storage 
Gen2 and loading the most recent three years of data into an Azure Synapse Analytics 
data warehouse. However, you must first query the parquet data to determine which rows 
fall within the last three years. Which of the following options will allow you to query the 
parquet data without requiring you to physically store the data in the data warehouse first?

A.	 Azure Synapse Analytic serverless SQL pools

B.	 Synapse Pipelines

C.	 Synapse Link

D.	 Linked Service

13.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? Prescriptive analytics involves examining his-
torical data to determine why certain events happened.

A.	 Predictive

B.	 Diagnostic

C.	 Cognitive

D.	 No change needed

14.	 You are a data analyst for a company that sells different types of bicycles. For an upcoming 
review of this past quarter’s sales, you would like to build a report that shows how well dif-
ferent types of bikes have done in the company’s various sales territories. One requirement 
for this report is that it includes a visualization that displays total sales for each bike subcate-
gory. Which of the following visuals best serves this requirement?

A.	 Line chart

B.	 Column chart

C.	 Scatter plot

D.	 Map

15.	 What type of index is optimal for database tables that are used in queries that perform large 
aggregations of data?

A.	 Columnstore

B.	 Clustered

C.	 Nonclustered

D.	 Unique

16.	 Which Azure SQL option is an example of an IaaS offering?

A.	 Azure SQL Database

B.	 Azure SQL Managed Instance

C.	 SQL Server on an Azure Virtual Machine

D.	 Azure Synapse Analytics dedicated SQL pools



Assessment Test  xxix

17.	 Which Azure SQL option requires the least amount of administrative effort and is typically 
used when building modern cloud applications?

A.	 Azure SQL Managed Instance

B.	 Azure SQL Database

C.	 Azure Synapse Analytics Serverless SQL Pools

D.	 SQL Server on an Azure Virtual Machine

18.	 You are developing a database platform that will serve an OLTP system and will need to 
store more than 10 TB of data. The database platform will need to minimize administrative 
effort as much as possible. Which of the following database and service tier options is the 
most appropriate for this use case?

A.	 Azure SQL Database Hyperscale

B.	 Azure SQL Database Elastic Pool

C.	 Azure SQL MI, Business Critical

D.	 Azure Synapse Analytics dedicated SQL pools

19.	 Which of the following options will give specific IP addresses access to an Azure SQL Data-
base’s logical server?

A.	 Virtual network firewall rules

B.	 Private Link

C.	 Server-level IP firewall rules

D.	 Database-level IP firewall rules

20.	 What free tool can be used to determine potential compatibility issues when planning a SQL 
Server database upgrade or a migration to Azure SQL?

A.	 Data Migration Planner

B.	 Data Migration Assistant

C.	 Database Migration Recommender

D.	 Database Migration Service

21.	 Which of the following tools can be used to automate Azure resource deployments?

A.	 Azure PowerShell

B.	 Azure CLI

C.	 Azure Resource Manager templates

D.	 All of the above

22.	 How often does Azure perform a full database backup of an Azure SQL Database?

A.	 Once a month

B.	 Once a week

C.	 Once a day

D.	 Once an hour



xxx  Assessment Test

23.	 Which of the following commands is an example of a DML command?

A.	 SELECT

B.	 CREATE

C.	 ALTER

D.	 DROP

24.	 Which SQL Server feature can be used to obfuscate sensitive data in different columns?

A.	 Always Encrypted

B.	 Transparent Data Encryption

C.	 Dynamic data masking

D.	 Column-Level Security

25.	 Which of the following open-source databases is available as a PaaS offering in Azure?

A.	 PostgreSQL

B.	 MySQL

C.	 MariaDB

D.	 All of the above

26.	 Which of the following describes Read Committed isolation for SQL Server?

A.	 Transactions running with Read Committed isolation issue locks on involved data at the 
time of data modification to prevent other transactions from reading dirty data. This is 
the default isolation level for SQL Server–based database engines.

B.	 Transactions running with Read Committed isolation issue read and write locks on 
involved data until the end of the transaction.

C.	 Read Committed isolation is the lowest isolation level, only guaranteeing that physically 
corrupt data is not read.

D.	 Read Committed isolation is the highest isolation level, completely isolating transactions 
from one another.

27.	 When following a star schema design pattern for a data warehouse, which of the following 
table types is used to store metrics?

A.	 Measure table

B.	 Dimension table

C.	 Materialized table

D.	 Fact table

28.	 When configuring a SQL Server instance on an Azure VM, what is the recommended storage 
configuration for the disk, log, and tempdb files?

A.	 Place data and log files on the same disk and tempdb on a separate disk.

B.	 Place data, log, and tempdb files on separate disks.

C.	 Place log and tempdb files on the same disk and data files on a different disk.

D.	 Place data and tempdb files on the same disk and log files on a separate disk.



Assessment Test  xxxi

29.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? Nonrepeatable reads occur when a transac-
tion reads the same row several times and returns different data each time.

A.	 Phantom

B.	 Dirty

C.	 Inconsistent

D.	 No change needed

30.	 What type of join will retrieve all data from the left table of a join condition and only data 
that meets the join condition from the table on the right?

A.	 Full inner join

B.	 Left inner join

C.	 Left outer join

D.	 Right outer join

31.	 Which of the following nonrelational database types is optimal for storing the relationships 
between multiple entities?

A.	 Graph database

B.	 Document database

C.	 Key-value store

D.	 Columnar database

32.	 Which of the following statements is not true about a document in a document database?

A.	 Different schemas can be used across multiple documents.

B.	 Documents are typically stored as semi-structured data formats, such as JSON, BSON, 
and XML.

C.	 Queries performing specific lookups or filters can only search by a document’s key and 
not by one of the data values.

D.	 Documents can easily be distributed across multiple storage devices.

33.	 You are designing a data storage solution that will store transactions made on an e-commerce 
site. The schema for these transactions is very fluid and is typically different for each trans-
action. There is also a requirement for the database to be able to scale globally, with some 
of the replicated regions being able to be written to. Which of the following is the most 
appropriate?

A.	 Azure SQL Database

B.	 Azure Cosmos DB API for MongoDB

C.	 Azure Cosmos DB Cassandra API

D.	 Azure Cosmos DB Core (SQL) API



xxxii  Assessment Test

34.	 Which of the following is a difference between Azure Table storage and the Azure Cosmos 
DB Table API?

A.	 Entities in Azure Table storage maintain a defined schema, while entities in the Azure 
Cosmos DB Table API have flexible schemas.

B.	 Azure Table storage offers single region replication, while the Azure Cosmos DB Table 
API offers multi-region replication.

C.	 Queries can only perform searches on keys when interacting with Azure Table storage, 
while the Azure Cosmos DB Table API allows queries to search on keys and values.

D.	 The maximum entity size in Azure Table storage is 2 MB, while the Azure Cosmos DB 
Table API has a maximum entity size of 4 MB.

35.	 What is the unit of measure used to represent the throughput required to read and write data 
stored in Azure Cosmos DB?

A.	 Database transaction units (DTUs)

B.	 Request Units (RUs)

C.	 Throughput units (TUs)

D.	 Cosmos DB transaction units (CDTUs)

36.	 What type of keys does an Azure Cosmos DB account generate to provide access to its 
resources? How many are created?

A.	 One read-write key and one read-only key

B.	 Two read-write keys and one read-only key

C.	 One read-write key and two read-only keys

D.	 Two read-write keys and two read-only keys

37.	 Which consistency level guarantees that all reads will return the most recent version of a doc-
ument while potentially resulting in slower write performance due to application connections 
being paused while transactions are committed?

A.	 Session

B.	 Bounded staleness

C.	 Strong

D.	 Eventual

38.	 What is the name of the field that is used to distribute Azure Cosmos DB data across storage?

A.	 Partition key

B.	 Distribution key

C.	 Primary key

D.	 Foreign key



Assessment Test  xxxiii

39.	 You have been asked to isolate an Azure Cosmos DB account by associating it with a sub-
net in a virtual network. Which of the following services can you use to attach a private IP 
address from the subnet to the account?

A.	 Private endpoint

B.	 Service endpoint

C.	 IP endpoint

D.	 Access endpoint

40.	 As the data architect for your company, you have been tasked with designing a storage solu-
tion that is optimized for storing videos, images, audio files, and each file’s associated meta-
data. Which type of data store should you use?

A.	 Graph

B.	 Document

C.	 Object

D.	 Columnar

41.	 Which of the following storage services is used to replace existing on-premises file shares and 
is accessible via SMB or NFS protocols?

A.	 Azure Blob storage

B.	 Azure Files

C.	 Azure Data Lake Storage Gen2

D.	 Azure Cosmos DB File API

42.	 Which of the following access tiers is available for file shares that are hosted on a standard 
Azure storage account?

A.	 Transaction optimized

B.	 Hot

C.	 Cool

D.	 All of the above

43.	 What object is used to organize data in Azure Blob Storage?

A.	 Container

B.	 Directory

C.	 Blob

D.	 Table

44.	 What storage service is optimized to serve data to big data analytics environments such as 
Azure HDInsight, Azure Databricks, and Azure Synapse Analytics due to how it structures 
data and its integration with the Hadoop Distributed File System?

A.	 Azure Blob Storage

B.	 Azure Files

C.	 Azure Data Lake Storage Gen2

D.	 Azure Table storage



xxxiv  Assessment Test

45.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? Azure Data Lake Storage Gen2 provides users 
with the ability to grant granular access to storage objects and data with the use of POSIX-
like access control lists.

A.	 Azure Blob storage

B.	 Azure Files

C.	 Azure Table storage

D.	 No change needed

46.	 You are designing an Azure Storage solution that will be used to store log files. One of the 
solution requirements is that the data must be replicated to a secondary storage account in a 
different Azure region in case of a region outage. Which of the following options should you 
enable on the storage account?

A.	 Geo-redundant storage (GRS)

B.	 Geo-zone-redundant storage (GZRS)

C.	 Zone redundant storage (ZRS)

D.	 Both A and B

47.	 What is the minimum number of storage accounts you need to create to host two blob con-
tainers, one file share, and one table?

A.	 One

B.	 Two

C.	 Three

D.	 Four

48.	 Which of the following Azure RBAC roles will grant users read, write, and delete access 
to an Azure Blob Storage container but will not give them full management rights over the 
container?

A.	 Storage Blob Data Owner

B.	 Storage Blob Data Contributor

C.	 Storage Blob Data Reader

D.	 Storage Blob Data Writer

49.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? AzCopy is a stand-alone desktop application 
that can be used to create and delete Azure Storage resources such as blob containers and file 
shares. Users can also upload, download, and delete Azure Storage data with AzCopy.

A.	 Azure Data Factory

B.	 Azure Data Box

C.	 Azure Storage Explorer

D.	 No change needed



Assessment Test  xxxv

50.	 Which of the following open-source frameworks can be deployed with Azure HDInsight?

A.	 Apache Hadoop

B.	 Apache Storm

C.	 Apache Kafka

D.	 All of the above

51.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? Spark drivers are installed on every worker 
node in a Spark cluster and are used to execute job tasks.

A.	 Spark sessions

B.	 Spark executors

C.	 Cluster managers

D.	 No change needed

52.	 Which of the following statements regarding Azure Databricks is true?

A.	 Azure Databricks can be used for both batch and stream processing workflows.

B.	 The Databricks File System (DBFS) is a built-in distributed file system that Azure Data-
bricks uses to persist data after a Databricks cluster is terminated so that it is not lost.

C.	 Azure Databricks provides an interactive development environment for data exploration.

D.	 All of the above.

53.	 The cost of an Azure Databricks cluster consists of what two components?

A.	 Azure VMs and Databricks Units (DBUs)

B.	 Azure Kubernetes Service (AKS) and Databricks Units (DBUs)

C.	 Azure Container Instance (ACI) and Databricks Units (DBUs)

D.	 Azure Kubernetes Service (AKS) and Databricks Cost Units (DCUs)

54.	 You are configuring a new Azure Databricks cluster that will be used for nightly batch 
processing jobs. The cluster will be responsible for processing very large datasets and will 
need to be able to scale out horizontally to finish processing data within a few hours. Which 
of the following cluster modes is the most optimal for this workload?

A.	 High concurrency

B.	 Standard

C.	 Single node

D.	 Compute

55.	 Which of the following is not a type of analytical pool that is available with Azure Synapse 
Analytics?

A.	 Serverless SQL pool

B.	 Dedicated SQL pool

C.	 Databricks pool

D.	 Apache Spark pool



xxxvi  Assessment Test

56.	 You are designing a data warehouse with an Azure Synapse Analytics dedicated SQL pool 
that will serve business intelligence applications and analytical queries. To optimize query 
performance, which of the following table types should you consider adding a clustered col-
umnstore index to?

A.	 Large fact tables with more than 60 million rows

B.	 Small reference tables

C.	 Medium-sized dimension tables

D.	 All of the above

57.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? In Azure Data Factory, linked services repre-
sent data structures within data stores, such as a SQL Server table or a set of files in Azure 
Data Lake Storage Gen2.

A.	 Dataset

B.	 Activity

C.	 Pipeline

D.	 No change needed

58.	 What Azure Data Factory resource is used to power pipeline runs?

A.	 Compute resources

B.	 Integration runtimes

C.	 Spark clusters

D.	 Hadoop clusters

59.	 Azure Databricks notebooks and Azure HDInsight Hive queries are examples of what Azure 
Data Factory activity type?

A.	 Control

B.	 Data movement

C.	 Data transformation

D.	 Data manipulation

60.	 Which of the following data movement mechanisms that are native to Azure Synapse 
Analytics dedicated SQL pools provide the most flexibility when loading data from 
Azure Storage?

A.	 PolyBase

B.	 COPY command

C.	 BCP

D.	 OPENROWSET



Assessment Test  xxxvii

61.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? External tables are used by services such as 
Azure Synapse Analytics to read data from files in Azure Storage without having to create an 
additional copy of the data.

A.	 Materialized views

B.	 SQL tables

C.	 Virtual tables

D.	 No change needed

62.	 When using PolyBase, which of the following T-SQL commands are used to define external 
tables in a dedicated SQL pool?

A.	 CREATE EXTERNAL FILE FORMAT

B.	 CREATE EXTERNAL TABLE

C.	 CREATE EXTERNAL DATA SOURCE

D.	 All of the above

63.	 What service is used to create Power BI paginated reports?

A.	 Power BI Report Builder

B.	 Power BI service

C.	 Power BI Desktop

D.	 Power BI Report Server

64.	 Which of the following Power BI data connectivity types cannot be used to establish a con-
nection with an Azure SQL Database?

A.	 Import.

B.	 Live connection.

C.	 DirectQuery.

D.	 All of the above can be used to connect to an Azure SQL Database.

65.	 Power BI supports what formula language for building custom calculations such as measures, 
custom columns, and custom tables?

A.	 M

B.	 DAX

C.	 F#

D.	 SQL

66.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? A Power BI dashboard provides a summarized 
view that enables business decision makers to monitor their business through a single page.

A.	 Interactive report

B.	 Paginated report

C.	 Table

D.	 No change needed



xxxviii  Assessment Test

67.	 Which of the following Power BI service components can be used to explore data with 
natural language queries?

A.	 Power BI Quick Insights

B.	 Power BI Q&A

C.	 Power BI Natural Language Query

D.	 Power BI Dataflows



Answers to the Assessment Test  xxxix

Answers to the Assessment Test
1.	 B.  The velocity at which data is processed is defined as either being processed in scheduled 

batches or streamed in real time. See Chapter 1 for more information. 

2.	 D.  Lambda architectures have a batch and a serving layer for batch processed data and a 
speed layer for stream processed data. See Chapter 1 for more information.

3.	 C.  When adhering to ACID properties, transactional databases must ensure that transactions 
are durable and will be available for querying after the database is brought back online from 
a database failure. See Chapter 1 for more information.

4.	 B.  Azure Data Factory can be used to orchestrate the flow of data in a data processing 
pipeline. It can schedule the order of when different transformation activities need to occur, 
and allows users to incorporate error handling logic. See Chapter 1 for more information.

5.	 D.  Azure Synapse Analytics dedicated SQL pools is a relational database offering that 
follows a distributed, multi-parallel processing architecture. See Chapter 1 for more 
information.

6.	 A.  Documents represent user-defined content in a NoSQL database such as Azure Cosmos 
DB or MongoDB. Tables, indexes, and views are core components of a relational database. 
See Chapter 1 for more information.

7.	 B.  Azure Blob Storage is optimized for storing objects such as images and telemetry data. It 
is also an optimal data store for data that is used by distributed analytics platforms such as 
Azure Databricks and Azure HDInsight. See Chapter 1 for more information.

8.	 D.  The ETL, or Extract, Transform, and Load, approach has been used to build business 
intelligence solutions for years. This approach involved extracting data from source systems, 
transforming it to adhere to business rules, and loading it into a data model used for analysis. 
See Chapter 1 for more information.

9.	 C.  Conforming data to a predefined schema is known as schema-on-write. Schema-on-read, 
on the other hand, is the process of defining a schema as data is read from a storage location. 
See Chapter 1 for more information.

10.	 A.  Azure Data Factory mapping data flows is a graphical tool that gives data engineers the 
ability to extract data from one or more source systems, transform data through a series of 
different activities, and then load the data into a destination data store for reporting. See 
Chapter 1 for more information.

11.	 C.  Control flows are used to enforce the correct processing order of data movement and data 
transformation activities. See Chapter 1 for more information.

12.	 A.  Azure Synapse Analytics serverless SQL pools is an interactive service that allows devel-
opers to query data in ADLS or Azure Blob Storage. See Chapter 1 for more information.



13.	 B.  Diagnostic analytics uses historical data to answer questions about why different events 
have happened, whereas prescriptive analytics answers questions about what actions should 
be taken to achieve a particular goal. See Chapter 1 for more information.

14.	 B.  Column charts display aggregations for categorical data. See Chapter 1 for more 
information. 

15.	 A.  Columnstore indexes compress data in a column-wise format that is ideal for large-
scale scans of data that is done when performing aggregations. See Chapter 2 for more 
information.

16.	 C.  Virtual machines are an Infrastructure as a Service (IaaS) offering in Azure. These allow 
organizations to offload the management of their hardware infrastructure to Azure while 
providing a mirror image of how the service was hosted in their on-premises environment. 
The SQL Server on an Azure VM option allows organizations the ability to have full con-
trol over the OS and database engine while not needing to host any of the hardware. See 
Chapter 2 for more information.

17.	 B.  Azure SQL Database is a fully managed PaaS relational database in Azure. The hardware, 
OS, and database engine are completely managed by Microsoft, allowing developers to focus 
on application development instead of needing to spend time implementing database features 
such as backup management, high availability, disaster recovery, and advanced threat protec-
tion. See Chapter 2 for more information.

18.	 A.  Azure SQL Database Hyperscale is used for very large OLTP databases (>4 TB) and can 
automatically scale storage and compute. It uses a scale-out architecture to store data on file-
groups across multiple nodes. See Chapter 2 for more information.

19.	 C.  Server-level IP firewall rules for Azure SQL Database opens port 1433 for all databases on 
a logical server to a specified IP address. See Chapter 2 for more information.

20.	 B.  The Data Migration Assistant can be used to detect compatibility issues between versions 
of SQL Server and make recommendations on how to address them. The Azure Database 
Migration Service uses the Data Migration Assistant to assess an on-premises SQL Server 
database’s compatibility with the different versions of Azure SQL. See Chapter 2 for more 
information.

21.	 D.  Resource deployments in Azure can be scripted out and automated with Azure Power-
Shell, Azure CLI, and Infrastructure as Code templates such as Azure Resource Manager tem-
plates. See Chapter 2 for more information.

22.	 B.  Azure creates a full database backup once a week, while creating differential backups 
every 12 to 24 hours and transaction log backups every 5 to 10 minutes. See Chapter 2 for 
more information.

23.	 A.  Data Manipulation Language (DML) commands are used to interact with data stored in a 
database. DML commands can be used to retrieve and aggregate data for analysis, insert new 
rows, or edit existing rows. See Chapter 2 for more information.

xl  Answers to the Assessment Test



Answers to the Assessment Test  xli

24.	 C.  Dynamic data masking obfuscates sensitive data in a database table. It allows users to 
specify which columns to mask with one of several available masking patterns. See Chapter 2 
for more information.

25.	 D.  PostgreSQL, MySQL, and MariaDB are available on Azure as PaaS offerings. See 
Chapter 2 for more information.

26.	 A.  Read Committed transactions issue locks on involved data at the time of data modifica-
tion to prevent other transactions from reading dirty data. However, data can be modified by 
other transactions, which can result in non-repeatable or phantom reads. See Chapter 2 for 
more information. 

27.	 D.  Fact tables store measurable observations or events such as sales totals and inventory. See 
Chapter 2 for more information.

28.	 B.  The recommended configuration for SQL Server storage is to place data, log, and tempdb 
files on separate drives. See Chapter 2 for more information.

29.	 D.  Nonrepeatable reads occur when a transaction reads the same row several times and 
returns different data each time. See Chapter 2 for more information.

30.	 C.  Left outer joins retrieve all data from the table on the left side of the join condition 
and data that meets the join condition from the table on the right. See Chapter 2 for more 
information.

31.	 A.  Graph databases are specialized databases that focus on storing the relationship between 
data entities. Applications reading data from graph databases traverse the network of entities, 
analyzing their relationships. See Chapter 3 for more information.

32.	 C.  Unlike key-value stores, documents can be queried by both their key and different data 
values. See Chapter 3 for more information.

33.	 D.  Azure Cosmos DB Core (SQL) API is the native document database API for Azure 
Cosmos DB. It stores data in a JSON format, allowing documents storing transactions to 
maintain different schemas. Azure Cosmos DB can be globally distributed to multiple regions 
around the world, even allowing users to set one or more of the replicated regions to allow 
write operations. See Chapter 3 for more information.

34.	 B.  Azure Table storage only supports one additional replica, which can optionally support 
read-only workloads. The Azure Cosmos DB Table API supports multi-region replication and 
supports both read-only and read-write replicas. See Chapter 3 for more information.

35.	 B.  Request Units (RUs) are units of compute resources that are used to measure the 
throughput required to read and write data in Azure Cosmos DB. See Chapter 3 for more 
information.

36.	 D.  Azure Cosmos DB provides primary and secondary keys for read-write and read-only 
access. This allows users to regenerate and rotate keys without requiring any downtime. See 
Chapter 3 for more information.



xlii  Answers to the Assessment Test

37.	 C.  Strong consistency guarantees that reads will return the most recent version. This is 
at the expense of write performance as all application connections will be paused until a 
transaction is fully synchronized with every participating region. See Chapter 3 for more 
information.

38.	 A.  Partition keys are data fields that are used to distribute data into logical partitions. 
Logical partitions are then distributed to physical storage partitions. See Chapter 3 for more 
information.

39.	 A.  A private endpoint is a network interface that uses a private IP address from a virtual net-
work. You can attach a private endpoint to a PaaS technology, such as Azure Cosmos DB, to 
isolate it in a virtual network. See Chapter 3 for more information.

40.	 C.  Object storage is used to store large volumes of data in binary and text format. This can 
include videos, images, audio files, and metadata that is saved in text format. See Chapter 4 
for more information.

41.	 B.  Azure Files is a fully managed file share service in the Azure Storage suite of services. It is 
globally redundant and can be accessed using SMB or NFS protocols. See Chapter 4 for more 
information.

42.	 D.  Transaction optimized, hot, and cool access tiers are available for file shares hosted on a 
standard Azure storage account. See Chapter 4 for more information.

43.	 A.  Storage accounts allow users to organize their Blob storage data in container objects. See 
Chapter 4 for more information.

44.	 C.  Azure Data Lake Gen2 (ADLS) uses a hierarchical namespace to organize data in a way 
that optimizes data access. Using the Azure Blob Filesystem (ABFS) driver allows Apache 
Hadoop to easily interact with ADLS. See Chapter 4 for more information.

45.	 D.  Azure Data Lake Storage Gen2 (ADLS) implements an access control model that supports 
role-based access control (RBAC) and POSIX-like access control lists (ACLs). See Chapter 4 
for more information.

46.	 D.  GRS and GZRS are both valid disaster recovery options because they both replicate data 
to a secondary Azure region. See Chapter 4 for more information.

47.	 A.  A single storage account can host multiple blob containers, file shares, tables, and queues. 
See Chapter 4 for more information.

48.	 B.  Azure AD identities assigned the Storage Blob Data Contributor RBAC role are able to 
read, write, and delete blob containers and data. The Storage Blob Data Owner role also 
grants these rights, but it provides additional management access as well. See Chapter 4 for 
more information.

49.	 C.  Azure Storage Explorer is a stand-alone desktop application that can be used to manage 
Azure Storage resources and data. See Chapter 4 for more information.



Answers to the Assessment Test  xliii

50.	 D.  Azure HDInsight is a managed, open-source analytics service in Azure that can be 
used to deploy distributed clusters for Apache Hadoop, Apache Spark, Apache Interactive 
Query/LLAP, Apache Kafka, Apache Storm, and Apache HBase. See Chapter 5 for more 
information.

51.	 B.  Spark executors are installed on every worker node and are assigned tasks from the Spark 
driver. The executor is then responsible for processing the task it is assigned. See Chapter 5 
for more information.

52.	 D.  Azure Databricks is a unified analytics platform that offers an optimized Spark runtime 
for big data batch and stream processing workflows. It uses a distributed file system called 
the Databricks File System (DBFS), similar to HDFS, to persist data after a Databricks cluster 
is terminated so that it is not lost. Through its interactive notebook environment, developers 
can analyze data with SQL, Python, R, Scala, or Java. See Chapter 5 for more information.

53.	 A.  The cost of an Azure Databricks cluster can be broken down into two main components: 
Azure VMs and Databricks Units (DBUs). See Chapter 5 for more information.

54.	 B.  The standard cluster mode is optimized for single-user clusters that run batch or stream 
processing jobs. It is ideal for processing large datasets at scale. See Chapter 5 for more 
information.

55.	 C.  Azure Synapse Analytics has several categories of analytics pools, including dedicated and 
serverless SQL pools, Data Explorer pools, and Apache Spark pools. See Chapter 5 for more 
information.

56.	 A.  Clustered columnstore indexes (CCIs) organize tables into a columnstore format, 
compressing data into rowgroups. This is ideal for analytical queries that aggregate large 
amounts of data. However, CCIs will not compress data until there are more than 60 million 
rows in a table (1 million in an SMP database like Azure SQL Database). For this reason, 
adding a CCI to a large fact table will optimize analytical queries that scan the table. See 
Chapter 5 for more information.

57.	 A.  Datasets represent data structures within data stores, such as a table or a set of files. Data-
sets use a data store’s connection information that is defined as a linked service to connect to 
the data store. See Chapter 5 for more information.

58.	 B.  Integration runtimes provide the compute infrastructure where pipelines and pipeline 
activities either run or get triggered from. See Chapter 5 for more information.

59.	 C.  Data transformation activities, such as Azure Databricks notebooks and Azure  
HDInsight Hive queries, perform transformation operations on the data. See Chapter 5 for 
more information.

60.	 B.  The COPY command offers the most flexibility for high-throughput data ingestion into an 
Azure Synapse Analytics dedicated SQL pool. See Chapter 5 for more information.

61.	 D.  External tables are vital components of data virtualization techniques such as PolyBase 
and logical data warehouses as they are used to read data from files in Azure Storage without 
having to create an additional copy of the data. See Chapter 5 for more information.



xliv  Answers to the Assessment Test

62.	 D.  Defining external tables involves more than the external table definition. It also requires 
the connection to the data source and the format of the external data to be predefined. See 
Chapter 5 for more information.

63.	 A.  Power BI Report Builder is a free Windows desktop application that is used to create tra-
ditional paginated reports. See Chapter 6 for more information.

64.	 B.  While Power BI can establish a live connection with an Azure SQL Database through 
the DirectQuery connectivity type, the live connection connectivity type is exclusive to data 
stores that use the same storage engine as Power BI, such as Azure Analysis Services and SQL 
Server Analysis Services. See Chapter 6 for more information.

65.	 B.  The Data Analysis Expression (DAX) formula language can be used to create custom 
calculations such as measures, calculated columns, and calculated tables in a Power BI data 
model. See Chapter 6 for more information. 

66.	 D.  A Power BI dashboard provides a clear, summarized view that allows them to monitor 
their business and see the most important metrics without having to dig through a mountain 
of reports. See Chapter 6 for more information.

67.	 B.  Power BI Q&A is a tool in the Power BI service that allows users to explore their data 
with natural language queries. The visuals that are generated by Q&A can be added to a 
Power BI dashboard. See Chapter 6 for more information.



Core Data Concepts

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe types of core data workloads.

■■ Describe batch data.

■■ Describe streaming data.

■■ Describe the difference between batch and streaming data.

■■ Describe the characteristics of relational data.

✓✓ Describe data analytics core concepts.

■■ Describe data visualization (e.g., visualization, reporting, 

business intelligence (BI).

■■ Describe basic chart types such as bar charts and pie charts.

■■ Describe analytics techniques (e.g., descriptive, diagnostic, 

predictive, prescriptive, cognitive).

■■ Describe ELT and ETL processing.

■■ Describe the concepts of data processing.

Chapter 

1



This chapter will focus on the first objective for the Microsoft 
Azure DP-900 exam certification: describe core data concepts. 
We will discuss the different types of data and how they are 

stored, data processing techniques, and categories of data analytics. Understanding the con-
cepts covered in this chapter is critical to designing the most appropriate modern data solu-
tion in Azure for any business problem.

Describe Types of Core Data Workloads
The volume of data that the world has generated has exploded in recent years. Zettabytes 
worth of data is created every year, the variety of which is seemingly endless. Competing in a 
rapidly changing world requires companies to utilize massive amounts of data that they have 
only recently been exposed to. What’s more is that with the use of edge devices that allow 
Internet of Things (IoT) data to seamlessly move between the cloud and local devices, com-
panies can make valuable data-driven decisions in real time.

It is imperative that organizations leverage data when making critical business decisions. 
But how do they turn raw data into usable information? How do they decide what is 
valuable and what is noise? With the power of cloud computing and storage costs growing 
cheaper and cheaper every year, it’s easy for companies to store all the data at their dis-
posal and build creative solutions that combine a multitude of different design patterns. For 
example, modern data storage and computing techniques allow sports franchises to cre-
ate more sophisticated training programs by combining traditional statistical information 
with real-time data captured from sensors that measure features such as speed and agility. 
E-commerce companies leverage click-stream data to track a user’s activity while on their 
website, allowing them to build custom experiences for customers to reduce customer churn.

The exponential growth in data and the number of sources organizations can leverage to 
make decisions have put an increased focus on making the right solution design decisions. 
Deciding on the most optimal data store for the different types of data involved and the 
most optimal analytical pattern for processing data can make or break a project before it 
ever gets started. Ultimately, there are four key questions that need to be answered when 
making design decisions for a data-driven solution:

■■ What value will the data powering the solution provide?

■■ How large is the volume of data involved?

■■ What is the variety of the data included in the solution?

■■ What is the velocity of the data that will be ingested in the target platform?



Describe Types of Core Data Workloads  3

Data Value
The first question that needs to be answered when designing a data-driven solution is, what 
value will be gained by processing, storing, and analyzing potential data sources? What 
answers are the business trying to solve? While it is true that having more data can provide 
new and more fine-grained insights, it can sometimes come at a cost. Organizations must 
give considerable thought to what data is valuable and what data is not, all the while trying 
to minimize the amount of time spent in the decision-making process.

Designing a data-driven solution requires everyone involved to focus on deriving value 
from every process in the solution. This means that data architects must know the business 
goal of the solution from the beginning. Is this going to be a transactional database that pro-
vides the backend for a business’s e-commerce site? Will it be a data warehouse aggregating 
data from multiple source systems to provide a holistic view of a business’s performance? 
Or will the data store need to be able to ingest bursts of IoT data for real-time analytics? To 
answer these questions, we first need to understand the different types of data stores and the 
scenarios for which each one is best suited.

Relational Databases
Relational databases organize data into tables that can be linked based on data common to 
each other. The relationship between tables allows users to easily query multiple tables in the 
same query by joining columns from multiple tables together. Database tables store data as 
rows and are organized into a set number of columns. Columns are defined by specific data 
types such as integer or string so that only specific types of data from new or modified rows 
of data is accepted. For example, if you have a database table with a name column that only 
accepts string values, then trying to insert a number into that column will fail. Relational 
databases allow designers to go a step forward and design constraints on columns so that 
data must meet predefined criteria. This predefined structure that data in relational databases 
must adhere to is called a schema and is fundamental to how users query relational data.

Users querying a relational database use a version of the Structured Query Language 
(SQL) to issue queries to the database. Depending on the vendor, most relational database 
management systems (RDBMSs) have their own variation of SQL that are based on the 
ANSI standardized version of SQL. For example, the Microsoft suite of RDBMSs (e.g., SQL 
Server, Azure SQL Database, Azure SQL Managed Instance) can be interacted with using 
Transact SQL (T-SQL). T-SQL provides four flavors of commands for query development:

■■ Data Manipulation Language (DML) commands are used to manipulate data in data-
base tables. DML commands include SELECT, INSERT, UPDATE, and DELETE.

■■ Data Definition Language (DDL) commands are used to define RDBMS objects such as 
databases, tables, views, stored procedures, and triggers. DDL commands include CRE-
ATE, ALTER, and DROP.

■■ Data Control Language (DCL) commands are used to manage permissions and access 
control for users in a database. DCL commands include GRANT, REVOKE, and DENY.

■■ Transaction Control Language (TCL) commands are used to explicitly manage and 
control transaction execution to ensure that a specific transaction is successfully done 
without violating database integrity. TCL commands include BEGIN TRANSACTION, 
COMMIT TRANSACTION, and ROLLBACK TRANSACTION.



4  Chapter 1  ■  Core Data Concepts

Relational database design considerations largely depend on what the database will be 
supporting. A database that’s supporting a business’s e-commerce site and needs to log every 
transaction made by a customer has vastly different requirements than a database that sup-
ports a report application. While there are many different design patterns for data-driven 
solutions, most of them fall into one of two broad categories: transactional processing sys-
tems or analytical systems.

Transactional Processing Systems

Transactional processing systems, also known as online transaction processing (OLTP) sys-
tems, are used to capture the business transactions that support the day-to-day operations of 
an organization. Transactions can include retail purchases logged to point-of-sale (PoS) sys-
tems as purchases are made, orders purchased through e-commerce platforms, or even ticket 
scans at a sport or concert venue. Transactions do not only consist of newly inserted data, 
but also include deletes and updates of data. While each transaction is a small and unique 
measurement of work, OLTP systems need to be able to handle millions of transactions a 
day. This requires OLTP systems to be designed in a way that optimizes how fast transac-
tions are applied to them. To support this requirement, OLTP data stored in relational data-
bases is split into small chunks and stored in separate database tables. Splitting data into 
multiple tables allows the system to only update the tables that need to be updated, all the 
while maintaining relationships to data in tables that are associated but not updated with 
that transaction. This is commonly referred to as normalizing data.

Transactional databases must adhere to ACID properties (atomicity, consistency, isola-
tion, durability) to ensure that each transaction is reliable. These properties can be defined 
as follows:

■■ Atomicity guarantees that each transaction is treated as a single unit of work that either 
succeeds completely or fails completely. If any part of an insert, delete, or update opera-
tion in a transaction fails, the entire transaction fails and the database is left unchanged.

■■ Consistency ensures that data affected by a transaction is valid according to all pre-
defined rules. Inserting or altering data will only be successful if it maintains the appro-
priate predefined data types and constraints of the affected columns.

■■ Isolation ensures that concurrent transactions do not affect one another.

■■ Durability guarantees that once a transaction has been committed, it will remain com-
mitted even if there is a system failure.

Adhering to ACID properties is critical for OLTP systems that support many concurrent 
users reading and writing from them at the same time. They need to be able to process trans-
actions in isolation, all the while ensuring that users querying data can retrieve a consistent 
view of data even as it is being altered. Many RDBMSs implement relational consistency 
and isolation by applying locks to data when it is updated. A lock prevents other processes 
from reading data until the lock is released, and it is only released when the transaction is 
committed or is rolled back. Extensive locks caused by long-running queries can lead to poor 
query performance. To mitigate the issues caused by table locks, SQL Server and Azure SQL 
Database give database administrators (DBAs) the ability to specify the level of isolation to 



Describe Types of Core Data Workloads  5

which one transaction must be isolated from data modifications made by other transactions. 
Isolation levels determine the acceptance rate for queries returning data that has not been 
committed by an insert, update, or delete for faster return times. More on isolation levels can 
be found in Chapter 2, “Relational Databases in Azure.”

Analytical Systems

Analytical systems are designed to support business users who need to make informed 
business decisions from large amounts of data. For example, decisions made from analyt-
ical systems can drive the placement of an item in a retail store or an e-commerce site based 
on an item’s seasonal popularity. Most analytical systems ingest data from multiple sources, 
such as OLTP systems, and perform transformations that leverage business rules that cleanse 
and aggregate data so that it is useful for decision making. Decision makers usually don’t 
need all the details of a specific transaction, so data architects will design analytical systems 
that use data from OLTP systems to only include relevant information. Analytical systems 
are also denormalized so that users querying them are not burdened by having to develop 
complex queries that join multiple tables together. Analytical systems such as data ware-
houses are updated by either processing batches of data at the same time or aggregating data 
in real time from sources that can stream data. These different data-processing techniques 
are discussed further in the section “Data Velocity” later in this chapter.

The two types of analytical systems are data warehouses and online analytical processing 
(OLAP) systems. Data warehouses serve as the single source of truth for different functional 
areas within a business. Good data warehouses consolidate multiple disparate data sources 
and are optimized for reading data, making them perfect data sources for reporting applica-
tions. Data warehouses are typically relational data stores such as Azure Synapse Analytics 
dedicated SQL pool or Azure SQL Database. OLAP models are typically business intelli-
gence (BI) models that apply business logic and pre-aggregations to data warehouse data to 
create a layer of abstraction between the data warehouse and a reporting platform. Azure 
Analysis Services and Power BI tabular models are examples of OLAP technologies that can 
create these types of data models.

Something important to note is that data warehouses and OLAP models 
are not dependent on one another. While you can build an OLAP model 
from a data warehouse, reports can be built directly from data ware-
house data, and OLAP models can be built from data sources other 
than a data warehouse. More on data warehouses and OLAP models in 
Chapter 5, “Modern Data Warehouses in Azure.”

Typical data warehouses and OLAP tabular models will store data using a star schema. 
Star schemas make data easy to report against because of the way data is denormalized. 
Measurements and metrics are consolidated in fact tables. They are connected to tables that 
contain descriptive attributes for each measurement, also known as dimension tables. For 
example, an Internet sales fact table can be associated to multiple dimension tables, that 
include a date dimension that provides granular information on the date a purchase was 
made, a customer dimension that includes specific information about the customer that made 



6  Chapter 1  ■  Core Data Concepts

the purchase, and a product dimension that describes the different attributes of the product 
that was sold. The inherent simplicity in a star schema’s design allows analysts to easily cre-
ate aggregations on fact tables while joining the necessary dimension tables to answer differ-
ent business questions about the data.

Nonrelational Data Stores
There is a wide variety of data that doesn’t fit in a relational model. Nonrelational data, also 
known as NoSQL (Not Only SQL), refers to data that doesn’t fit into a relational model. 
Some solutions require more flexible data models than that of a relational database and 
can afford to trade ACID compliancy for speed and horizontal scale. NoSQL databases can 
handle volatile data that is written and read quickly better than relational databases because 
they don’t force the data to conform to a specific structure.

Binary objects such as images, videos, and PDFs are also considered nonrelational data. 
While relational databases such as SQL Server can store files such as the PDF copy of this 
book using features such as FILESTREAM, it is not the most optimal solution for file 
storage. Object stores are optimized for binary file storage and can be easily accessed to 
serve these files to applications. They can also be used to create highly scalable data lake eco-
systems for big data processing solutions.

NoSQL Databases

NoSQL databases do not impose a schema on data they store, allowing data to maintain 
its natural format as it is ingested. In fact, one of the primary benefits is that users who are 
designing a NoSQL database solution do not need to define the schema ahead of time. This 
flexibility makes NoSQL databases the ideal choice for solutions that require millisecond 
response times and need to be able to scale rapidly. Scenarios where NoSQL databases 
are potentially better options than relational databases include ingesting and analyzing 
bursts of data from IoT sensors, storing product catalog data for an e-commerce site’s web 
search functionality, and storing user-generated content for web, mobile, and social media 
applications.

Instead of storing data as rows in a table as in a relational database, data is stored as 
entities in collections or containers. Unlike rows in a table, entities in the same collection can 
have a different set of fields. This flexibility allows for several different implementations of 
NoSQL databases depending on the solution requirements. Generally, these implementations 
fall into the following four categories:

■■ Key-value stores are the simplest types of NoSQL database for inserting and querying 
data (see Figure 1.1). Each piece of data contains a key and a value. The key serves as 
a unique identifier for the piece of data, and the value contains the data. Values can be 
scalar values or complex structures such as a JSON array. When applications are que-
rying data from key-value stores, they issue queries that specify the keys to retrieve the 
values. Figure 1.1 is an example of a phone directory that stores one or more phone 
numbers per person in a key-value store. Examples of key-value stores include Python 
dictionary objects, Azure Table storage, and the Azure Cosmos DB Table API.



Describe Types of Core Data Workloads  7

■■ Document databases are the most common types of NoSQL databases (see Figure 1.2). 
Pieces of data are defined as documents and are typically stored in JSON, XML, YAML, 
or BSON format. Each document includes a document key that serves as a unique iden-
tifier for management and query lookups. Unlike a key-value store that can only retrieve 
data by doing a search on the key, applications querying a document database can per-
form lookups on a document’s key and/or one or more of its fields to retrieve specific 
sets of data. This feature makes document databases a better option for applications 
that need to be more selective. Figure 1.2 illustrates an example of customer orders 
stored as documents in a document database. Examples of document databases include 
MongoDB and the Azure Cosmos DB Core (SQL) API.

Key Value
Pete {(012) 123-4567}

Kate {(654) 879-1234, (123) 456-7890}
Jim {(987) 765-4321}

F IGURE 1.1   Key-value store

Key
1001

1002

Document

F IGURE 1.2   Document database



8  Chapter 1  ■  Core Data Concepts

■■ Columnar databases appear like relational databases conceptually (see Figure 1.3). They 
organize data into rows and columns but denormalize data so that it is divided into 
multiple column families. Each column family holds a set of columns that are logically 
related. Figure 1.3 is an example of a bicycle company’s product information stored in 
a columnar format. An example of a columnar database is the Azure Cosmos DB Cas-
sandra API.

■■ Graph databases store data as entities and focus on the relationship that these entities 
have with each other (see Figure 1.4). Entities are defined as nodes, while the relation-
ships between them are defined as edges. Applications querying a graph database do 
so by traversing the network of nodes and edges, analyzing the relationships between 
entities. While relational databases can accomplish similar goals, large graph databases 
can perform very traverse relationships very quickly bypassing the need to perform mul-
tiple join operations on many tables. Figure 1.4 illustrates an example of a graph data-
base that stores an organization’s personnel chart. The entities represent different job 
titles and departments, while the edges represent how each entity is related. Examples of 
graph databases include Neo4j and the Azure Cosmos DB Gremlin API.

Employee

Title: CEO

Employee

Title: Regional Director

Employee

Title: Regional Director

Employee

Title: Regional Chief of Staff

Department

Name: Head Office

Department

Name: Northeast Region

Department

Name: Southeast Region

F IGURE 1.4   Graph database

Row Key

ProductKey ProductInfo Quantity Info
Column Families

500 Category: Bicycle
Subcategory: Mountain Bike
Color: Matte Black
UnitPrice: 700

Category: Helmet
Subcategory: Standard Helmet
Color: Orange
UnitPrice: 30

QuantityOnHand: 10
QuantitySold: 12
ProductRating: 8.2

QuantityOnHand: 30
QuantitySold: 40
ProductRating: 9.3

505

F IGURE 1.3   Columnar database



Describe Types of Core Data Workloads  9

Chapter 3, “Nonrelational Databases in Azure,” describes each of the 
Azure NoSQL Database options in further detail.

Object Storage

Object data stores such as Azure storage accounts store huge volumes of data in text and 
binary format. You can think of a storage account as being like a shared folder on an orga-
nization’s local network. Unlike local file shares, storage accounts are highly scalable and 
allow organizations the freedom of being able to add whatever data they want without need-
ing to worry about adding hardware. Azure-based solutions that rely on data stored in files 
leverage Azure storage accounts in some form, as in the following scenarios:

■■ Storing images or videos that are analyzed by deep learning models or that are served 
to a website

■■ Storing files such as JSON, Avro, Parquet, CSV, or TSV that are used for distributed 
processing in big data solutions

■■ Storing data for backup and restore, disaster recovery, and archiving

■■ Storing telemetry information as log files that can be used for near real-time analysis

Storage accounts can service a wide variety of object store use cases. Depending on 
the scenario, you may decide to use one of the following storage account services to store 
binary objects:

■■ Azure Blob Storage is the most common service for object storage in Azure. Solutions 
that require analysis, from images or videos, backup management, or files used for dis-
tributed processing solutions, can be stored in Blob Storage. It can store exabytes worth 
of data and offers different access tiers to store data in the most cost-effective manner.

■■ Azure Data Lake Storage Gen2, also known as ADLS, is a set of capabilities that are 
built on top of Blob Storage but specifically for distributed analytics solutions. The 
key feature of ADLS that allows for quick and efficient data access is its hierarchical 
namespace. Hierarchical namespaces organize files into a hierarchy of directories that 
enable you to store data that is raw, cleansed, and aggregated without having to sacrifice 
one copy for the next.

■■ Azure Files is a fully managed file share solution in Azure. File shares are accessible via 
the Server Message Block (SMB) protocol or the Network File System (NFS) protocol. 
They can be mounted concurrently by cloud or on-premises systems.

Chapter 4, “File, Object, and Data Lake Storage,” describes the different 
Azure storage accounts services in detail and when each should be used.



10  Chapter 1  ■  Core Data Concepts

Data Volume
Data volume refers to the amount of data that needs to be analyzed and processed. Access 
to larger datasets can provide just as many headaches as it does clarity. Large datasets that 
are stored in databases that use bad design practices or queried by poorly written queries 
can cause applications to perform so badly that they come to a screeching halt. Traditional 
relational databases such as SQL Server or Azure SQL Database can be used for large data 
warehouses if they are leveraging a well-thought-out data model design with appropriate 
indexes and partitions, and applications are reading data with well-written queries. However, 
there is a limit to the amount of data that traditional database technologies and processing 
patterns can handle.

It is critical that the right data storage technologies and processing patterns are chosen 
in the design phase, especially if the datasets are going to be large in volume. Even the 
most properly tuned relational databases will begin to perform poorly after a certain size 
threshold. Symmetric multiprocessing, or SMP, systems such as SQL Server and Azure 
SQL Database are characterized by a single instance of an RDBMS that shares all the 
resources (CPU, memory, and disk). SMP systems can scale up to serve gigabytes (GB) 
and terabytes (TB) worth of data but hit a wall when the resource limits are hit. Massively 
parallel processing, or MPP, systems such as Azure Synapse Analytics dedicated SQL pool 
are designed to process large datasets. MPP systems are designed to be distributed parallel 
processing solutions, meaning they are not only able to scale up by adding more compute 
resources but can also scale out by adding more nodes to the system.

MPP databases can be less performant and more costly than an SMP 
database when the dataset size is small. Consider using an SMP database 
if the data warehouse is never going to be more than 1TB and queries 
perform more lookups than large-scale aggregations.

You can think of data processing differences between SMP and MPP systems as how 
a grocery store goes about restocking its shelves. One employee of a store can efficiently 
restock shelves in a single aisle in a relatively short amount of time. However, restocking 
every aisle in a large store that has many aisles can take hours or even days if there is only 
one employee available for the task. In most cases, floor managers at a store will assign aisles 
to different employees. This drastically reduces the amount of time it takes to restock an 
entire store since there are many employees restocking shelves in parallel. This is how MPP 
systems such as Azure Synapse Analytics, Azure HDInsight, and Azure Databricks operate. 
The underlying architecture includes a driver/control node that divides large processing 
tasks into multiple operations and assigns them to different worker/compute node. Data is 
stored in a distributed file system that is split into chunks to be processed by the different 
worker nodes.

The ability to separate compute and storage allows MPP systems to scale very quickly. 
Adding nodes to an Azure Synapse Analytics dedicated SQL pool or an Azure Databricks 
cluster can happen without having to repartition data. Data is instead persisted in a distrib-
uted file system that shards it into partitions or distributions to optimize the performance 



Describe Types of Core Data Workloads  11

of the system. Cloud-based object storage such as Azure Blob Storage or Azure Data Lake 
Storage Gen2 are generally used for the basis of distributed file systems. These technol-
ogies are highly scalable by design, making it easy to store massive amounts of data used by 
MPP systems.

While technologies such as Azure Synapse Analytics and Azure Databricks are ideal for 
modern data warehouse and data processing needs, they aren’t designed to store highly 
transactional data. Distributed file systems are great for storing data that will be used to 
create aggregated analysis but are not optimized for transactional data that is inserted or 
optimized one at a time. In cases where large amounts of transactional data, such as many 
thousands of transactions per second, need to be stored and globally distributed, it can be 
beneficial to use a NoSQL database such as Azure Cosmos DB to store transactional data. 
Transactional systems that use NoSQL databases have relaxed ACID properties in favor of 
schema flexibility and horizontal scale across multiple nodes. This provides similar bene-
fits to MPP systems in that there are more compute resources available for processing and 
storage. The trade-off here is that the process of maintaining transaction consistency will fall 
on application developers since NoSQL databases do not strictly follow ACID properties.

Data Variety
Data variety refers to the types of data involved. While you may think of data as just being 
entries in a spreadsheet, it can come in many different forms. Transactions captured from 
PoS systems, events generated from sensors, and even pictures can generate valuable insights 
that businesses can use to make decisions. Ultimately, data falls into three categories: struc-
tured, semi-structured, and unstructured.

Structured Data
Structured data can be defined as tabular data that is made up of rows and columns. Data 
in an Excel spreadsheet or a CSV file is known to be structured, as is data in a relational 
database such as SQL Server, Oracle, or MySQL. Structured data fits a well-defined schema, 
which means that every row in a table will have the same number of columns even if one 
or more of those columns do not have any values in the row. The process of every row in a 
structured dataset having the same number of columns is known as schema integrity. This 
is what gives users the ability to create relationships between tables in a relational database. 
More on this later in this chapter and in Chapter 2.

While schema integrity allows relational data to be easily queried and analyzed, it forces 
data to follow a rigid structure. This rigid structure forces users to consider how volatile 
their data will be over time. Considerations for how your schema will evolve over time or 
the differences between source data’s schema and your target solution will force you to 
develop sophisticated data pipelines to ensure that this volatility does not negatively impact 
your solution.

Figure 1.5 illustrates an example of structured data. The data in the figure is product 
information from the publicly available AdventureWorks2019 database.



12  Chapter 1  ■  Core Data Concepts

Semi-structured Data
Semi-structured data has some structure to it but no defined schema. This allows data to be 
written to and read from very quickly since the storage engine does not reorganize the data 
to meet a rigid format. While the lack of a defined schema naturally eliminates most of the 
data volatility concerns that come with structured data, it makes analytical queries more 
complicated as there isn’t a reliable schema to use when creating the query.

The most popular examples of semi-structured datasets are XML and JSON files. JSON 
specifically is very popular for sharing data via a web API. JSON stores data as objects in 
arrays, which allows an easy transfer of data. Both XML and JSON formats have somewhat 
of a structure but are flexible enough that some objects may have more or fewer attributes 
than others. Because the structure of the data is more fluid than that of a database with a 
schema, we typically refer to querying semi-structured data as schema-on-read. This means 
that the query definition creates a sort of quasi-schema for the data to fit in. Figure 1.6 dem-
onstrates how JSON can be used to store data for multiple customers while including differ-
ent fields for each customer.

There are multiple ways that we can store semi-structured data, varying from NoSQL 
databases such as Azure Cosmos DB (see Chapter 3) to files in an Azure storage account (see 
Chapter 4). Relational databases such as SQL Server, Azure SQL Database, and Azure Syn-
apse Analytics can also handle semi-structured data with the native JSON and XML data 
types. While this creates a convenient way for data practitioners to manage structured and 
semi-structured data in the same location, it is recommended to limit the amount of semi-
structured data you store in a relational database to very little or none.

Semi-structured data can also be stored in other types of NoSQL data stores, such as key-
value stores, columnar databases, and graph databases.

F IGURE 1.5   Structured data



Describe Types of Core Data Workloads  13

Unstructured Data
Unstructured data is used to describe everything that doesn’t fit in the structured or semi-
structured classification. PDFs, images, videos, and emails are just a few examples of 
unstructured data. While it is true that unstructured data cannot be queried like structured 

F IGURE 1.6   JSON example



14  Chapter 1  ■  Core Data Concepts

or semi-structured data, deep learning and artificial intelligence (AI) applications can derive 
valuable insights from them. For example, applications using image classification can be 
trained to find specific details in images by comparing them to other images.

Storing unstructured data is easier today than it has ever been. As mentioned previously, 
Azure Blob Storage allows companies and individuals the ability to store exabytes of data in 
any format. While this exam does not cover the many applications of unstructured data, it is 
important to note that unstructured data is becoming more and more vital for companies to 
gain a competitive edge in today’s world.

Data Velocity
The speed at which data is processed is commonly known as data velocity. Requirements for 
data processing are largely dependent on what business problem or problems we are trying 
to solve. Raw data such as football player statistics could be stored as raw data until every 
game for a given week is finished before it is transformed into insightful information. This 
type of data processing where data is processed in batches is commonly referred to as batch 
processing. We can also process data from sensors located on equipment that a player is 
wearing in real time so that we can monitor player performance as the game is happening. 
This type of data processing is called stream processing.

Batch Processing
Batch processing is the practice of transforming groups, or batches, of data at a time. This 
process is also known as processing data at rest. Traditional BI platforms relied on batch 
processing solutions to create meaningful insights out of their data. Concert venues would 
leverage technologies such as SQL Server to store batch data and SQL Server Integration 
Services (SSIS) to transform transactional data on a schedule into information that could be 
stored in their data warehouse for reporting. Many of the same concepts apply today for 
batch processing, but cloud computing gives us the scalability to process exponentially more 
data. Distributed computing paradigms such as Hadoop and Spark allow organizations to 
use compute from multiple commodity servers to process large amounts of data in batch.

Batch processing is typically done in a process of jobs automated by an orchestration 
service such as Azure Data Factory (ADF). These jobs can be run one by one, in parallel, 
or a mix of both depending on the requirements for the solution these jobs are a part of. 
Automated batch jobs can be run after a certain data threshold is reached in a data store but 
are more often triggered one of two ways:

■■ On a recurring schedule—an ADF pipeline running every night at midnight, or on a 
periodic time interval starting at a specified start time.

■■ Event/trigger-based—an ADF pipeline running after a file is uploaded to a container in 
Azure Blob Storage.

It is also critical that batch processing includes error handling logic that acts on a failed 
job. A common architecture pattern that handles batch processing in Azure is illustrated in 
Figure 1.7.



LOGS, FILES AND MEDIA
(UNSTRUCTURED)

BUSINESS/CUSTOM
APPS

(STRUCTURED)

AZURE DATA LAKE
STORE

AZURE SQL
DATABASE

AZURE SQL
DATABASE

DASHBOARDS

AZURE DATA
FACTORY

AZURE DATA
FACTORY

AZURE
DATABRICKS

AZURE
SYNAPSE

APPLICATIONS

DATA FACTORY
DATA FLOWS

TRANSACTIONAL
STORAGE

INGEST
STORAGE

DATA
LOADING

DATA
PROCESSING SERVING

STORAGE

ORCHESTRATION

Load flat files
into Data Lake on a

schedule

Applications
manage their

transactional data
directly

Extract and
transform

relational data

Load processed
data into tables

optimized for
analytics

Read data from
files using DBFS

Read data
from SQL

using
JDBC/ODBC

Power BI

SQL

SQL

F IGURE 1.7   Common architecture for batch processing in Azure



16  Chapter 1  ■  Core Data Concepts

There is quite a bit going on in the diagram in Figure 1.7, so let’s break it down 
step-by-step:

■■ Data is loaded from disparate source systems into Azure. This could vary from raw 
files being uploaded to a central data repository such as Azure Data Lake Storage Gen2 
(ADLS) to data being collected from business applications in an OLTP database such as 
Azure SQL Database.

■■ Raw data is then transformed into a state that is analytics and report ready. Here, we 
can choose between code-first options such as Azure Databricks to have complete 
control over how data is transformed or GUI-based technologies such as Azure Data 
Factory Data Flows. Both options can be executed as activities in an ADF pipeline.

■■ Aggregated data is loaded into an optimized data store ready for reporting. Depend-
ing on the workload and the size of data, an MPP data warehouse such as Azure Syn-
apse Analytics dedicated SQL pool can be used to optimally store data that is used for 
reporting.

■■ Data that is ready to be reported is then analyzed through client-native applications or a 
business intelligence tool such as Power BI.

Azure technologies such as Azure Data Lake Gen 2, Azure Data Factory, 
Azure Databricks, and Azure Synapse Analytics are discussed in detail in 
Chapter 5, “Modern Data Warehouses in Azure.”

While the architecture in Figure 1.7 is a common pattern for batch processing data, it is 
by no means the only one. Deciding on the most appropriate technologies and strategies for 
processing batch data requires exploratory analysis of the data, knowledge of the source 
data that will be processed, and well-defined requirements for how the data will be used. 
You will also need to decide on an extract, transform, and load (ETL) or an extract, load, 
and transform (ELT) data manipulation pattern, depending on whether your storage and 
transformation engines are one and the same. The section “Data Processing Techniques” 
later in this chapter further examines each of these two patterns. Batch processing includes 
the following advantages:

■■ Accurately processing large volumes of data at a time. More compute power can be allo-
cated to batch processing, and the time constraint for batch processing usually isn’t as 
critical as it is with stream processing.

■■ Conveniently scheduling when data is processed. Batch processes can be scheduled 
whenever, which allows organizations to schedule their batch jobs to run off-peak hours.

■■ Easily creating complex analytics and aggregations of data. Because the data processed 
in batches is persisted in data stores such as ADLS, Azure SQL Database, and Azure 
Synapse Analytics, organizations can return to clean datasets repeatedly for reporting 
and machine learning purposes.

■■ Transforming semi-structured data such as JSON or XML data into a structured, sche-
matized format that is ready for analytical queries.



Describe Types of Core Data Workloads  17

Batch processing includes the following disadvantages:

■■ Latency between receiving data and being able to analyze it.

■■ Data that is processed in batch jobs must be ready before the batch can be processed. As 
mentioned previously, complex error handling checks need to be in place to ensure that 
problems with data, errors, or failed activities do not bring the entire process down.

Stream Processing
Instead of processing groups of data at scheduled intervals as you would with batch 
processing, stream processing performs actions on data in real time as it is generated. The 
proliferation of connected applications and IoT sensor devices in recent years has led to a 
boom in the amount of data sources that can stream data. Organizations that leverage data 
streams are able to innovate at an on-the-go pace, allowing them to instantly respond to the 
needs of their customers.

You can think of a stream of data as a continuous flow of data from some source, also 
known as a message producer. Each piece of data in a stream is often referred to as an event 
or a message and typically arrives in an unstructured or semi-structured format such as 
JSON. The following list includes some examples of stream processing:

■■ An e-commerce company analyzing click-stream data as consumers are browsing the 
company’s website to provide product recommendations in real time

■■ Fitness trackers streaming heart rate and movement data to a mobile app and providing 
real-time updates of the wearer’s workout efficiency

■■ Financial institutions tracking stock market changes in real time and automatically mak-
ing portfolio decisions as stock prices change

■■ Oil companies monitoring the status of pipelines and drilling equipment

While these examples include the same transformation activities as many batch processes, 
they have vastly shorter latency requirements.

Stream processing is just one step in designing a real-time data processing solution. The 
following logical components will need to be considered when designing a real-time solution:

■■ Real-time message ingestion—The architecture must include a way to capture and store 
real-time messages regardless of the technology that is creating the stream of data. Mes-
sage brokers such as Azure Event Hubs, Azure IoT Hub, and Apache Kafka are used 
to ingest millions of events per second from one or many message producers. These 
technologies will then queue messages before sending them to the next appropriate step 
in the architecture. Most of the time this will be a processing engine of some type, but 
some solutions will require sending the raw messages to a long-term storage solution 
such as Azure Blob Storage or ADLS for future batch analysis.

■■ Stream processing—Stream processing engines are the compute platforms that process, 
aggregate, and transform data streams. Technologies such as Azure Functions, Azure 
Stream Analytics, and Azure Databricks Structured Streaming can create time-boxed 
insights data that is queued in a real-time message broker. These technologies will then 



18  Chapter 1  ■  Core Data Concepts

write the results to message consumers such as an analytical data store or a reporting 
tool that can display real-time updates.

■■ Analytical data store—Processed real-time data can be written to databases such as 
Azure Synapse Analytics, Azure Data Explorer, and Azure Cosmos DB that power ana-
lytical applications.

■■ Analysis and reporting—Instead of being written to an analytical data store first, pro-
cessed real-time data can be published directly from the stream processing engine to 
report applications like Power BI.

While Azure Stream Analytics typically uses a message broker such as 
Azure Event Hubs or Azure IoT Hub as an input for data, it can also take 
static data from Azure Blob Storage or Azure Data Lake Store Gen 2 as an 
input and process it as a stream to an analytical data store or a reporting 
tool.

Using these steps, we have the flexibility to choose if we want to process data streams live, 
on demand, or a combination of both. The “live” approach is the most common method for 
processing data streams and involves analyzing data continuously as it arrives from a mes-
sage broker such as Azure Event Hubs. This approach is what allows organizations to create 
calculations and aggregations against data streams for temporal analysis. Figure 1.8 illus-
trates this approach with a simple example of an IoT-enabled thermostat streaming tempera-
ture data to Azure for analysis.

This approach produces a real-time streaming solution that creates temperature analysis 
on the fly while storing the transformed data in an Azure SQL Database for further analysis 
such as comparing one month’s temperature data to the same month in the previous year.

While most streaming solutions will be designed with the live approach, there are some 
cases that call for processing stream data in micro-batches. This “on-demand” approach 

Thermostat Azure
Event Hub

Azure
Stream

Analytics

Azure
SQL

Database

Power BI
Streaming
Dashboard

SQL

F IGURE 1.8   Live stream processing



Describe Types of Core Data Workloads  19

involves persisting incoming data into a data store like ADLS and processing the data when 
convenient. If the scenario does not require real-time analysis, then this can significantly cut 
computing costs. Figure 1.9 illustrates an example of this approach. While it is like the solu-
tion in Figure 1.8, the on-demand design adds an extra step that stores temperature data in 
ADLS before Azure Stream Analytics performs any computations on the data and outputs it 
to Power BI and Azure SQL Database.

Azure Stream Analytics can leverage static reference data stored in 
sources such as ADLS, Azure SQL Database, and Azure Cosmos DB to 
enrich the streamed dataset. This is true for both live and on-demand 
approaches.

Solutions such as this demonstrate how technologies that are typically used for batch 
processing scenarios can be used in stream processing solutions. In the next section, we will 
discuss how modern design principles can be used to leverage batch and stream processing in 
the same solution.

Leveraging Batch and Stream Processing Together
Until recently, most organizations were limited to how quickly they could process data by 
the hardware and network connectivity in their datacenters. They were often limited to the 
types of queries they could run with real-time data and were often left waiting for hours on 
stream processing activities to complete. However, the scalability of cloud-based solutions 
such as those in Azure empower organizations to process data whenever they want. This 
flexibility has given way to modern architectural designs that creatively analyze batch- and 
stream-processed data in the same solution. One of the most popular of these design pat-
terns is the Lambda architecture. The Lambda architecture is a data processing architecture 
that separates batch and stream processing operations into a cold path and a hot path. 
Figure 1.10 illustrates the movement of this pattern.

Azure
Data Lake

Thermostat Azure
Event Hub

Azure
Stream

Analytics

Azure
SQL

Database

Power BI
Streaming
Dashboard

SQL

F IGURE 1.9   On-demand stream processing



20  Chapter 1  ■  Core Data Concepts

Solutions that use a Lambda architecture create two paths for data processing:

■■ The cold path is where the batch processing operations, also known as the batch layer, 
occur. Data flowing into this path is not constrained to low latency requirements, allow-
ing for much larger datasets to be processed on a scheduled basis. Once data has been 
processed in the batch layer, the results are sent to a serving layer (e.g., data warehouse 
such as Azure Synapse Analytics or Azure SQL Database) for querying.

■■ The hot path is where speed processing operations, also known as the speed layer, occur. 
Data flowing into this path need to be processed as quickly as possible, at the expense  
of accuracy. Once processed, data from the speed layer either is sent directly to the  
analytics/report application for analysis or incrementally updates the serving layer based 
on the most recent data.

Eventually, data from the hot and cold paths will converge at the analytics/report applica-
tion. If the application needs to display data in real time, it will acquire it from the hot path. 
Otherwise, the application will read data from the cold path to display more accurate anal-
ysis created from a larger dataset.

One of the core principles of the Lambda architecture is that raw data stored in the batch 
layer is immutable. New data is always appended to existing data, never overwriting older 
data. Changes to the value of a particular dataset are stored as a new time-stamped record. 
This allows for recompilation of computations at any point in time to provide more accu-
rate historical analysis. Azure enables organizations to easily implement this design without 
needing to purchase and install new hardware. For example, Azure Data Lake Storage 
Gen2 can store petabytes worth of information, and with its native hierarchical namespaces 
(think of directories and folders in a file explorer), organizations can create directory trees 
corresponding to different dates that can store and maintain data that was generated on that 
date. Organizations are not burdened with scaling existing or installing new storage devices 
and can instead focus on implementing business logic.

Batch Source
Systems

Stream Source
Systems

Analytics and
Reporting

Batch Layer

Speed Layer

Cold Path

Hot Path

Serving Layer

F IGURE 1.10   Lambda architecture



Describe Data Analytics Core Concepts  21

Describe Data Analytics Core Concepts
The process of taking raw data and turning it into useful information is known as data ana-
lytics. Companies that invest in sophisticated, well-designed data analytics solutions do so 
to discover information that helps the overall performance of the organization. Finding new 
opportunities, identifying weaknesses, and improving customer satisfaction are all results 
that come from data analytics. This involves building a repeatable solution that collects data 
from the appropriate source systems, transforms it into dependable information, and serves 
it in a way that is easy to consume.

One example of an end-to-end data analytics solution is a sports franchise that would 
like to build a fan engagement solution to improve stadium attendance rates and in-stadium 
retail sales by retaining more season ticketholders and creating incentive-based programs 
for different fan groups. The first step to create this solution will be to identify the sources 
of data that will be most useful to answering questions related to who attends games and 
what external factors may influence attendance rates. The next step will be to take these dis-
parate sources of data and transform them so that they present a reliable view of the data 
that can be easily read by consumers who are acting on the data. For example, consumers of 
the data could be data scientists who develop regression models that predict future stadium 
attendance or analysts who build reports and dashboards that display in-stadium trends for 
different fan groups. These actions are then used to create decisions that will enhance ticket 
sales and operational efficiency during a game.

Data Processing Techniques
The most critical part of a data analytics solution is that the result set is clean, reliable data. 
Consumers of the data must be able to retrieve the same answer from a question, regardless 
of how the question is presented to the data model. There cannot be a question of the quality 
of data being reported on. This is the goal of data processing.

Simply put, data processing is the methodology used to ingest raw data and transform 
it into one or more informative business models. Data processing solutions will ingest data 
either in batches or as a stream and can either store the data in its raw form or begin trans-
forming it. Data can undergo several transformations before it is ready to be reported on. 
Some of the most common transformation activities are as follows:

■■ Filtering out corrupt, duplicated, or unnecessary data

■■ Joining data or appending it to other datasets

■■ Normalizing data to meet a standard nomenclature

■■ Aggregating data to produce summarizations

■■ Updating features to a more useful data type

Data processing pipelines must include activities that are repeatable and flexible enough 
to handle a variety of scenarios. Tools such as ADF, Azure Databricks, and Azure Functions 
can be used to build processing pipelines that use parameters to produce desired results. 



22  Chapter 1  ■  Core Data Concepts

These tools also allow developers to include error handling logic in their processing pipelines 
to manage how pipelines proceed if processing errors present themselves without bringing 
the pipeline to a screeching halt.

Cloud-based data processing solutions make it easy to store data after multiple stages 
of transformations. Storage solutions such as ADLS allow organizations to store massive 
amounts of data very cheaply in folders designated for raw data that was just ingested, data 
that has been filtered and normalized, and data that has been summarized and modeled for 
reporting. This allows data processing solutions to reuse data at any point in time to validate 
actions taken on the data and produce new analysis from any point in the data’s life cycle.

There are two data processing approaches that can be taken when extracting data from 
source systems, transforming it, and loading the processed information into a data model. 
These approaches are extract, transform, and load (ETL) and extract, load, and transform 
(ELT). Choosing between them depends on the dependency between the transformation and 
storage engines.

Extract, Transform, and Load (ETL)
ETL pipelines process data in a linear fashion with a different step for each phase. They first 
collect data from different sources, transform the data to remove dirty data and conform to 
business rules, and load the processed data into a destination data store. This approach has 
been used in business intelligence (BI) solutions for years and has a wide array of established 
best practices. Each of the three phases requires an equal amount of attention when being 
designed. If properly designed and developed, ETL pipelines can process multiple sources of 
data in parallel to save time. For example, while data from one source is being extracted, a 
transformation activity could be working on data that has already been received, and a load-
ing process can begin working on writing the transformed data to a destination data store 
such as a data warehouse. Figure 1.11 illustrates common Azure technologies used in each 
phase of an ETL workflow.

Extract

Data Source 1

Data
factory

Data Flows

Azure
Databricks

Transform Load

Azure
Function

Orchestration

Data Source 2

Orchestration

Azure
Synapse
Analytics

Azure
Cosmos DB

Azure Data
Lake Store

Azure SQL
Database

SQL

F IGURE 1.11   ETL workflow



Describe Data Analytics Core Concepts  23

In this example, data is extracted from its source systems and transformed by one or more 
compute engines such as Azure Databricks, Azure Functions, or Azure Data Factory map-
ping data flows. After the necessary transformations are completed, the data is loaded into a 
destination data store such as Azure Synapse Analytics, Azure Cosmos DB, ADLS, or Azure 
SQL Database to power different types of applications. ADF automates this workflow and 
controls when each step is executed. Keep in mind that this is a rudimentary example and a 
typical ETL pipeline may include several staging layers and transformation activities as data 
is prepared. The following sections describe each phase and how each activity is managed in 
an ETL workflow.

Extract

The first phase of an ETL process involves extracting data from different source systems and 
storing it in a consolidated staging layer that is easier for the transformation tools to access. 
Data sources are typically heterogenous and are represented by a wide variety of data for-
mats. The staging layer can be transient to cut back on storage demands or to eliminate per-
sonally identifiable information (PII) that may be present in the source systems or persisted if 
PII data is not present and storage is not a concern. The staging layer is typically persisted as 
files in an object store such as Azure Blob Storage or ADLS.

In Azure, tools such as Azure Logic Apps and ADF allow data engineers to drag and drop 
activities with a graphical user interface (GUI) that copies data from source systems and land 
them in the staging layer. These activities can be parameterized to dynamically adjust where 
the raw data is staged. Custom code options such as Azure Databricks and Azure Functions 
are also available to extract data with languages such as C#, Python, Scala, and JavaScript. 
The very nature of these custom code options gives data engineers more control over how 
extracted data is formatted and staged. Regardless of whether data extraction is done with 
a GUI-based or code-first tool, data extraction activities can be automated to run on a 
schedule or event driven based on when new data is added to the source system.

Data can be extracted from a source system a few different ways. Incremental extrac-
tions involve only pulling source data that has been recently inserted or updated. This can 
minimize both the time to extract the necessary source data and the time to transform the 
new raw records but requires additional logic to determine what data has been changed. For 
systems that are not capable of identifying which records have changed, a full data extrac-
tion needs to take place. This requires having a full copy of the source data being extracted. 
While that can result in an accurate copy of the source data, it could take longer to extract, 
and subsequent transformation activities will take longer to run.

Transform

The second phase of an ETL process involves transforming the extracted data that is 
cleansed and meets a set of business requirements. Data is scrubbed of dirty data and pre-
pared so that it fits the schema of the destination data model. Transformations are split into 
multiple activities for optimal data pipeline performance. This modular approach allows 
transformation activities to run in parallel and provides an easier method for trouble-
shooting failed tasks. It also allows data engineers to easily implement additional transfor-
mation activities as new business requirements are added.



24  Chapter 1  ■  Core Data Concepts

Depending on the complexity of the transformations, data may be loaded into one or 
more additional staging layers to serve as intermediary stages for partially transformed data. 
One example of this is splitting the different phases of data transformations into bronze, sil-
ver, and gold staging layers.

■■ The bronze layer represents raw data ingested from different sources in a variety of dif-
ferent formats. Some filtering may have happened to get the data to this stage, but there 
are minimal transformations to data in the bronze layer.

■■ The silver layer represents a more refined view of the data. Silver layer data is charac-
terized by data that has been scrubbed of dirty records and entities made up of fields 
from multiple bronze layer datasets using join or merge operations. Data in the silver 
layer is typically used for machine learning activities since this data is cleansed but not 
summarized.

■■ The gold layer represents aggregated datasets that are used by reporting applications. 
Calculations such as weekly sales and month-over-month averages are included in gold 
layer datasets.

As in the extract phase, transformation activities can be built with GUI-based or code-
based technologies. SQL Server Integration Services (SSIS) is an ETL tool that is involved 
in traditional, on-premises BI solutions. SSIS provides many connectors and transformation 
activities out of the box that allow developers to build sophisticated data engineering pipe-
lines with a GUI. ADF provides a similar development experience for cloud-based ETL. ADF 
provides a drag-and-drop experience with several data transformation activities out of the 
box that can be chained together graphically. The core components of how ADF orchestrates 
ETL pipelines will be discussed in the section “Control Flows and Data Flows” later in this 
chapter, but as far as transformations are concerned, ADF can execute transformation activ-
ities in four ways:

■■ External Compute Services—ADF can be used to automate the execution of externally 
hosted transformation activities that are custom coded. These activities can be devel-
oped in several different languages and hosted on tools such as Azure Databricks and 
Azure Functions. Stored procedures hosted on Azure SQL Database or Azure Synapse 
Analytics can also be invoked by ADF using the Stored Procedure Activity. Transforma-
tions that are developed from scratch give engineers more flexibility on how to imple-
ment business rules and how to handle different scenarios. ADF allows engineers to pass 
results from previous steps in a data pipeline as parameters or static predefined param-
eters to a custom-developed transformation activity so that it can transform data more 
dynamically.

■■ Mapping Data Flows—ADF gives data engineers the option to build no-code transfor-
mation pipelines with the use of mapping data flows. These are very similar to data flow 
activities in SSIS, giving data engineers the ability to create transformation activities 
with a GUI. The benefit of a no-code solution like this is that the code performing the 
transformations and the compute running the code is obfuscated from the data engineer. 
This can greatly improve operational productivity by allowing engineers to purely focus 
on implementing business logic instead of optimizing code and compute infrastructure. 



Describe Data Analytics Core Concepts  25

Just as with transformation activities that are hosted on external compute services, ADF 
can pass static parameters or results from previously executed activities as parameters to 
mapping data flows to dynamically transform data.

■■ Power Query—Previously known as wrangling data flows, ADF allows data engineers 
to perform no-code transformations on data using Power Query. Power Query is a 
native component of Power BI and gives analysts the ability to perform transformation 
activities in a scalable manner. Power Query in ADF enables citizen data analysts to 
create their own pipelines in ADF without needing to know how to build sophisticated 
data engineering pipelines.

■■ SSIS—Organizations have been building BI solutions for many years now, and if their 
solution involved SQL Server, then there is probably an SSIS component involved. 
Rebuilding existing SSIS with ADF pipelines could be very time consuming if the exist-
ing SSIS footprint is sophisticated. This can be a blocker for organizations migrating to 
Azure. To alleviate these concerns, customers can choose to migrate their SSIS projects 
to ADF. Data engineers can use the Execute SSIS Package activity in their data pipelines 
as singleton activities or chained to other ADF native activities. Running an SSIS project 
in ADF requires the use of a special compute infrastructure known as the Azure-SSIS 
integration runtime to run them. Chapter 5 will discuss the Azure-SSIS integration run-
time and other types of runtimes in further detail.

ADF only supports SSIS packages that are deployed using the project 
deployment model.

Load

The last phase of an ETL process involves loading the transformed data to a destination 
data model. This data model can be a data warehouse such as Azure Synapse Analytics or 
Azure SQL Database, a database such as Azure Cosmos DB that serves highly distributed 
web applications, or an object store such as ADLS that is used as the golden copy of data for 
machine learning activities. This phase can also be handled by GUI-based tools such as ADF 
or custom code solutions.

Data can be loaded to a destination data store using a few different loading patterns. 
Incremental or differential loads involve adding new data or updating existing data with 
new values. This can reduce the amount of time it takes to load newly transformed data to 
the destination data store, allowing consumers of the data to analyze the new data as quickly 
as possible. Sometimes there is a need to load the destination data store with the entire data-
set, requiring an erasure of the existing data store’s data. For these use cases, it can be useful 
to have a staging table in the destination data store to serve as an intermediary between the 
final transformed copy of the data and production tables being analyzed. Since the staging 
tables are the tables being truncated, consumers would not experience any downtime from 
missing data. New records can be added to the production table through a process called 
partition switching.



26  Chapter 1  ■  Core Data Concepts

Relational database tables that are loaded with data processed by an ETL pipeline must 
have their schemas prebuilt. Not considering the structure of a table’s existing schema can 
result in load errors stemming from mismatched data types and incorrect column names. 
This requirement to shape data so that it conforms to a predefined schema is known as 
schema-on-write.

Control Flows and Data Flows

Many ETL tools employ two methods for orchestrating data pipelines. Tasks that ensure the 
orderly processing of data processing activities are known as control flows. Data processing 
activities are referred to as data flows and can be executed in sequence from a control flow. 
Data engineers that use ADF to orchestrate their data pipelines can use control flows to 
manage the processing sequence of their data flows.

Control flows are used to enforce the correct processing order of data movement and data 
transformation activities. Using precedence constraints, control flows can dictate how pipe-
lines proceed if a task succeeds or fails. Subsequent tasks do not begin processing until their 
predecessors complete. Examples of control flow operations in ADF include Filter, ForEach, 
If Condition, Set Variable, Until, Web, and Wait activities. ADF also allows engineers to run 
entire pipelines within a pipeline after an activity has finished with the Execute Pipeline con-
trol flow activity. Figure 1.12 shows a simple control flow in ADF, where the Lookup task 
is retrieving table metadata from a SQL Server database that will be passed to a set of Copy 
activities to migrate those tables to a data warehouse hosted in Azure Synapse Analytics.

This control flow includes outcomes for successful lookups of table metadata and failures. 
If metadata is retrieved successfully, then the next step will be a ForEach loop that includes 
data movement tasks that will migrate each SQL Server table successfully retrieved to Azure 
Synapse Analytics. If the Lookup task fails for whatever reason, then the next step will be a 
Web activity that will send an email alerting an administrator of the failure.

F IGURE 1.12   ADF control flow



Describe Data Analytics Core Concepts  27

Another example of a control flow is the order in which different mapping data flows are 
executed. Using the Data Flow activity, data engineers can chain together multiple mapping 
data flows to process data in the correct order. Figure 1.13 illustrates an example of a con-
trol flow that executes a series of data flows sequentially and in parallel.

This pipeline begins by inserting new State fields followed by new geography fields in the 
State and geography destination tables, all the while inserting new specialty fields in parallel. 
Once these data flows are complete, the control flow will run a final data flow that inserts 
new detail fields into the destination detail table. Of course, these tasks only control what 
order ETL activities run in, not the underlying data transformation steps. ADF allows devel-
opers to build or edit specific mapping data flows by double-clicking their corresponding 
Data Flow control flow activity.

While control flows manage the order of operations for ETL pipelines, data flows are 
where the ETL magic happens. Data flows are specific tasks in a control flow and are 
responsible for extracting data from its source, transforming it, and loading the transformed 
data into the appropriate destination data stores. The output of one data flow task can 
be the input to the next one, and data flows without a dependency on each other can run 
in parallel. As mentioned in the section “Transform” earlier in this chapter, ADF can exe-
cute four types of transformation activities that can serve as data flows. This section will 
focus on two of those types: mapping data flows and external compute services that host 
custom code.

Mapping data flows are ETL pipelines that data engineers can design with a GUI. Devel-
opers begin by selecting a source to extract data from, then performing one or more trans-
formation activities on the data, and finally loading the transformed data into a destination 
data store. The finished data flows are translated to code upon execution and use scaled-out 
Apache Spark clusters to run them. Figure 1.14 is a screenshot of the Insert New  
DimSpecialty fields data flow task from Figure 1.13.

F IGURE 1.13   Ordering data flow processing with a control flow



28  Chapter 1  ■  Core Data Concepts

This data flow begins by extracting data from a CSV file. Next, the CSV data undergoes 
a few transformations including the removal of duplicate rows, selecting only the columns 
needed, and creating new columns to conform to the destination data store’s schema. Finally, 
the data flow loads the transformed data to the DimSpecialty table in Azure Synapse Ana-
lytics by inserting each transformed column into its associated destination column. Once 
these tasks are completed, the control flow will flag this data flow as being successfully com-
pleted and wait on the Insert New DimGeography Fields data flow to successfully complete 
before moving on to the Insert New FactDetail Values data flow.

ADF can also be used to automate custom-coded data flow activities that are hosted in 
external compute services such as Azure Functions, Azure Databricks, SQL Stored Proce-
dures, or Azure HDInsight. Code hosted on these platforms can be used to perform one or 
more phases of an ETL pipeline. Running these tasks as activities in ADF allows them to 
run on a scheduled basis and alongside other activities such as mapping data flows or other 
custom-coded data flows. Figure 1.15 illustrates a control flow in ADF that executes external 
data flows that are hosted in Azure Databricks and Azure SQL Database.

This example is a part of a solution that analyzes American football players who are 
NFL football players. The destination data store is a data warehouse hosted on an Azure 
SQL Database that provides consumers with the ability to compare the current year’s group 
of prospects with those in previous years. The pipeline in Figure 1.15 starts by running a 
Python notebook hosted in Azure Databricks that extracts information on when a prospect 
was selected in the current year’s NFL Draft, cleanses the data, and loads the cleansed data 
in the data warehouse. The next step in the pipeline is to run a stored procedure in the data 
warehouse that associates a unique identifier that was assigned to them before the NFL 
draft. Finally, the pipeline executes another stored procedure that tells analysts if a prospect 
was not drafted. As you can see, each of these data flows is critical to the success of this data 
analytics solution. ADF makes it possible to run these activities that are developed on differ-
ent technologies in sequential order and control when they should run.

F IGURE 1.15   Azure Databricks and SQL stored procedure control flow

F IGURE 1.14   ADF mapping data flow



Describe Data Analytics Core Concepts  29

A notebook is a web-based interface that contains runnable code, visu-
alizations, and narrative texts. ADF can run notebooks that are hosted in 
Azure Databricks as well as code developed in Azure Databricks that is 
packaged as Jar or Python files.

Extract, Load, and Transform (ELT)
ELT workflows differ from ETL workflows solely in where the data transformation takes 
place. Instead of a separate transformation engine, the destination data store is used to load 
and transform data. This simplifies the design by removing extraneous components that 
would typically be used to transform data. Since the transformation and load components 
are one and the same, the destination data store must be powerful enough to efficiently 
complete both tasks at the same time. This makes large-scale analytics scenarios the perfect 
use cases for ELT workflows since they rely on the scalability of MPP technologies such as 
Azure Synapse Analytics or Azure Databricks. Figure 1.16 illustrates the common Azure 
technologies used in each phase of an ELT workflow.

In this example, data is extracted from its source systems via ADF and stored as flat files 
in a raw data store such as ADLS or Azure Blob Storage. Next, data is virtually “loaded” 
into staging tables in the destination data store. Data virtualization is what enables ELT 
workflows to process massive amounts of data with relatively little overhead. Instead of 
data being physically stored in the destination data store, external tables are used to overlay 
a schema over the flat file data in ADLS or Azure Blob Storage. The data is then able to be 
queried like any other table, without taking up storage in the destination data store. MPP 
technologies such as Spark (using Azure Databricks or Azure Synapse Apache Spark pools) 
and Azure Synapse Analytics are typical data stores used for this approach because they have 
mechanisms for creating external tables and performing transformations on them. The fol-
lowing sections will describe each phase in further detail.

Source Data

Data Source 1

Azure
Databricks

Extract Load/Transform

Orchestration

Data Source 2

Azure
Synapse
Analytics

Azure Data
Lake Store

Azure Blob
Storage

F IGURE 1.16   ELT workflow



30  Chapter 1  ■  Core Data Concepts

Extract

Collecting data from various sources is just as important in ELT workflows as it is in ETL. 
Unlike with ETL scenarios that might begin raw processing once the data is extracted, data 
involved in ELT scenarios is always consolidated in a central repository. These repositories 
must be able to handle large volumes of data. Scalable file systems that are based on the 
Hadoop Distributed File System (HDFS), such as ADLS and Azure Blob Storage, are typi-
cally used in these scenarios.

Extracted data must also be in formats that are compatible with the loading mechanisms 
of the destination technology. Typical file formats include delimited text files, such as CSV 
or TSV, semi-structured files such as XML or JSON, and column compressed files such as 
AVRO, ORC, or Parquet. Column compressed file formats should be used for larger datasets 
as these are optimized for big data workloads because they support very efficient compres-
sion and encoding schemes. Parquet is widely used because of its ability to embed the data’s 
schema within the structure of the data, thus reducing the complexity of data loading and 
transformation logic.

Load and Transform

The key to any ELT workflow is the destination data store’s ability to process data without 
needing to store it in-engine. MPP technologies do this by fitting a schema over one or more 
files that are stored in ADLS or Azure Blob Storage. The destination data store only manages 
the schema of the data and not the storage of it. These external tables allow engineers to 
query and process data as they would a table that is stored in the destination data store but 
minimizes the amount of storage required by it. Transformations that are performed on the 
virtualized data take advantage of the features and capabilities of the destination data store 
but are applied to the data in object storage.

The three Azure technologies that can perform load & transform operations in an ELT 
workflow are Azure HDInsight, Azure Databricks, and Azure Synapse Analytics.

■■ Azure HDInsight is a managed cloud service that lets data engineers build and manage 
Hadoop, Spark, Kafka, Storm, and HBase clusters that can process stored data in ADLS 
or Azure Blob Storage. HDInsight clusters use Apache Hive to project a schema on data 
in object storage without needing to persist the data locally on the cluster. This decou-
pling of compute from storage allows clusters to process data at scale.

■■ Azure Databricks is a fully managed, cloud-based data platform that allows data engi-
neers to build enterprise-grade Spark-powered applications. Databricks was built by 
the same team that built Apache Spark and provides a highly optimized version of the 
open-source version of the Spark runtime. Azure Databricks is a specific implementation 
of Databricks that includes native integration with a variety of Azure-based storage such 
as ADLS, Azure Blob Storage, Azure Synapse Analytics, Azure SQL Database, and Azure 
Cosmos DB. Azure Databricks provides a similar mechanism to decoupling compute 
from storage as Azure HDInsight but has a few key advantages. For one, Azure Data-
bricks provides native integration with Azure Active Directory for identity and access 
management. Azure Databricks also provides easier ways to manage clusters by letting 



Describe Data Analytics Core Concepts  31

data engineers manually pause clusters or set an auto-shutdown after being idle for a 
fixed amount of time. Clusters can also be set to auto-scale to support different work-
load sizes.

■■ Azure Synapse Analytics is a comprehensive data analytics platform that includes tools 
for data ingestion, transformation, exploration, and presentation. For the purposes of 
this section, we will focus on the three tools that can be used for the load and transform 
phases: dedicated SQL pools, serverless SQL pools, and Apache Spark pools.

■■ Dedicated SQL pools, formerly known as Azure SQL Data Warehouse, store data 
in relational tables with columnar storage. A dedicated SQL pool can scale up or 
down depending on how large the workload is and can be paused when it’s not being 
used. Data engineers can choose to virtualize data that is stored in object storage 
with either PolyBase or the COPY statement. PolyBase uses external tables to define 
and access the data in Azure object storage. PolyBase requires the creation of a few 
external objects to be able to read data. These include an external data source that 
points to the data’s location in either ADLS or Azure Blob Storage, an external file 
format that defines how the data is formatted, and finally the actual external table 
definition. The COPY statement is a newer command for loading data into a dedi-
cated SQL pool. It simplifies the load process by requiring only a single T-SQL state-
ment that needs to be run instead of needing to create multiple database objects. It 
also includes some additional features to what PolyBase offers. Going forward, the 
COPY statement should be used to load data from ADLS and Azure Blob Storage to 
a dedicated SQL pool.

■■ Serverless SQL pool is an interactive service that allows developers to query data 
in ADLS or Azure Blob Storage. It is a distributed data processing system, built 
for large-scale data explorations. There is no infrastructure to set up or clusters to 
maintain since it is serverless. A default endpoint for a serverless SQL pool is pro-
visioned for every Azure Synapse Analytics workspace that is deployed. Data engi-
neers and data analysts can use the OPENROWSET function to query files in Azure 
object storage and can create external tables or views to maintain the structure of 
the data for later usage. Serverless SQL pools support T-SQL for users querying and 
processing data.

■■ Apache Spark pools allow data engineers to deploy Spark clusters using the open-
source version of Spark to process large volumes of data.

Azure Synapse Analytics serverless SQL pools and Apache Spark pools 
are also able to perform ELT actions on operational data that is stored in 
Azure Cosmos DB. Azure Synapse Link is a hybrid transactional and ana-
lytical processing (HTAP) capability that gives data engineers and devel-
opers the ability to use Synapse Spark or Synapse SQL to build analytics 
solutions without needing to transform data in Azure Cosmos DB first. 
More on HTAP for Azure Cosmos DB in Chapter 5.



32  Chapter 1  ■  Core Data Concepts

Each of these technologies is an MPP system and is designed to handle big data scenarios. 
The key advantage of using an MPP technology like the ones just discussed for big data sce-
narios is that once the data is loaded, they will break the data down into smaller partitions 
and distribute the processing of the partitions across multiple machines in parallel. Instead 
of one job processing a mammoth sized dataset, transformations can occur in parallel on 
smaller subsets of the data, resulting in more efficient processing of the data. For more 
information on Azure HDInsight, Azure Databricks, and Azure Synapse Analytics and to 
better understand when to use which one or how to use them in tandem, see Chapter 5.

Describe Analytics Techniques
While it is important to spend considerable time planning and developing data processing 
pipelines, it is vital not to forget about the questions that drove the solution to be built in 
the first place. Being able to answer questions like the following is critical to the success 
of a business: What has happened? Why did certain events happen? What will happen? 
What should we do? and What might happen if different variables change?. Knowing how 
to answer these questions can help businesses understand their past successes and failures 
and predict what actions they should take in the future. These questions can be answered 
using the five types of analytics techniques, telling the story of a business’s past, present, 
and future.

The five types of analytics include descriptive, diagnostic, predictive, prescriptive, and 
cognitive analytics. Each type of analytics represents a different stage of an organization’s 
analytics maturity. For example, descriptive analytics techniques are based on decades of 
best practices that are easier to implement than prescriptive analytics but do not provide as 
much value. The relationship between the value provided by an analytics technique and its 
implementation complexity is known as the Analytics Maturity Model. This is illustrated in 
Figure 1.17.

Hindsight

Va
lu

e

Descriptive Analytics

Insight

Diagnostic Analytics

Foresight

Complexity

Predictive Analytics

Actions

Prescriptive Analytics

Inference

Cognitive Analytics

F IGURE 1.17   Analytics Maturity Model



Describe Data Analytics Core Concepts  33

Descriptive
Descriptive analytics use historical data to answer questions about what has happened 
to the business. This is a great first step for conducting statistical analysis as it informs 
decision makers of any trends, data distribution, and if there are any outliers in the data. 
Key performance indicators (KPIs) allow analysts to summarize large datasets to track the 
success and failure of key objectives. This type of analysis is reactive and is typically the first 
analysis technique used by organizations making decisions based on data.

Data used for descriptive analytics is typically gathered and persisted in a central repos-
itory, such as a data warehouse. Well-designed data warehouses make it easy for OLAP 
models and BI tools to analyze performance metrics against a variety of scenarios. An 
example of descriptive analytics is generating reports to provide a view of an organization’s 
sales data.

Diagnostic
Diagnostic analytics use historical data to answer questions about why different events have 
happened. While descriptive analytics use historical data to display past results, diagnostic 
analytics take this a step further by determining the root cause behind those results. This is 
the first technique that leverages machine learning to provide insights. Examples of diag-
nostic analytics include drilling down to focus on a particular facet of data, anomaly detec-
tion, data mining to get information from a massive set of data, and correlation analysis to 
pinpoint cause-and-effect relationships.

Predictive
Predictive analytics use historical data to build statistical and machine learning models to 
forecast what will happen in the future. This is the first type of analytics in the Analytics 
Maturity Model that answers questions regarding a business’s future. Techniques such as 
neural networks, decision trees, and regression models allow predictive analytics solutions to 
make recommendations on the following scenarios:

■■ Whether or not a customer will leave for a competitor. Customer churn models use 
past trends to make predictions on the risk of a customer leaving. These models can 
help organizations make decisions on how to preemptively maintain high-risk cus-
tomers’ business.

■■ When to replace or repair a piece of equipment. Predictive maintenance models enable 
organizations that rely on machines to run their business (e.g., oil and gas companies 
or vending machine companies) to know when they should take proactive measures to 
repair or replace equipment.

■■ Whether or not a piece of data is fraudulent. Fraud detection models will alert organiza-
tions if they find any suspicious transaction activity.

While descriptive and diagnostic analysis can be completed using traditional BI tech-
niques, predictive analysis requires developers to have a more specialized skillset. Along with 
the need to properly maintain the historical data warehouse, solutions involving predictive 
analytics must maintain and regularly revisit model performance to ensure that the models 
are making well-informed decisions. While not in scope for this book, it is important to 



34  Chapter 1  ■  Core Data Concepts

understand the tools and mechanisms used to maintain a machine learning model’s life cycle. 
Azure Machine Learning and Apache Spark’s MLflow enable data scientists to train, deploy, 
automate, and manage their machine learning models. These technologies allow data scien-
tists to deploy models using container-based technologies such as Kubernetes or Azure Con-
tainer Instances, which can be used by applications to make batch or real-time predictions.

Prescriptive
Prescriptive analytics solutions are a step up from predictive analytics as they not only pre-
dict outcomes, but they also advise organizations on how to reach a desired outcome. These 
solutions use findings from descriptive, diagnostic, and predictive analytics techniques to 
answer questions about what actions should be taken to achieve a particular goal. Combi-
nations of machine learning algorithms and business rules are used to simulate the outcomes 
of different input parameters. One example of the impact prescriptive analytics solutions can 
make is in the sports science field. Prescriptive analytics solutions not only predict when an 
athlete will experience a soft tissue injury but will also advise team doctors on what mea-
sures to take to prevent them. They can also be used to advise athletes on the most efficient 
training exercises for performing at their peak.

Cognitive
Cognitive analytics solutions combine several artificial intelligence and machine learning 
techniques such as deep learning and natural language processing to draw inferences from 
existing data and patterns. This type of analytics will provide information based on exist-
ing knowledge bases and then add this information back into the knowledge base for future 
inferences.

This type of analytics takes inspiration from the way the human brain processes 
information. Instead of retrieving data via a query or creating analysis using structured 
development methods, cognitive analytics solutions are developed to derive more accurate 
inferences over time by learning from each interaction with data.

Describe Data Visualization Techniques
Different analytics techniques provide a business with the information needed to make 
critical decisions moving forward but can be difficult to interpret if the findings are left as 
plain numbers. Data visualization refers to the process of graphically representing valuable 
information. The resulting infographics include charts, graphs, maps, and other objects that 
make information easy to read. Visualizations make it easy for analysts and business decision 
makers to see trends, outliers, and patterns in data. It is for this reason that using the most 
effective visualizations to represent information is critical to the storytelling process of data 
analytics.

Data visualization techniques come in a few different flavors. Depending on the purpose 
of the infographic and the skillset of the end users, data visualizations may be developed 
using one of the following three methods:



Describe Data Analytics Core Concepts  35

■■ Analytical tools allow users the ability to access and manipulate very granular levels of 
data. Tools like SQL Server Analysis Services (SSAS), Azure Analysis Services (AAS), and 
Power BI store data as OLAP models that can be filtered in a way that allow analysts 
to view calculated metrics for different scenarios. Data scientists can use tools such as 
Jupyter Notebooks to develop visualizations in a browser-based shell using Python or 
R. Using Python or R packages such as matplotlib or ggplot2, data scientists can build 
visualizations that are highly customized depending on what story they are trying to 
tell. Analysts and developers building infographics with analytical tools must have an 
intimate knowledge of the data that they are working with and must possess very spe-
cialized development skills. However, while analytical tools require the most complex 
set of skills to use, they provide users with the most flexibility in how they visualize 
information.

■■ Reporting tools give analysts the ability to organize data into informational summaries 
to monitor how different areas of the organization are performing. Traditional report 
tools such as SQL Server Reporting Services (SSRS) allow report builders to build static 
reports that use set filters to monitor business performance, only updating the displayed 
data when the dataset powering the report is refreshed. Modern technologies such as 
Power BI improve reporting capabilities by allowing users to dynamically alter the dis-
played data with filters, slicers, and interactive visualizations. This interactive capability 
empowers decision makers to consider multiple scenarios when determining the most 
appropriate course of action for their business. Reports are typically accessed by end 
users through an online portal such as powerbi.com and are only accessible to users 
with the appropriate level of access. You can learn more about Power BI security in 
Chapter 6, “Reporting with Power BI.”

■■ Dashboarding tools provide quick overviews of the most relevant pieces of information. 
Dashboards are designed to be easy to consume, allowing decision makers to act shortly 
after the data exposes new opportunities or threats. Tools such as Power BI allow ana-
lysts to collect the most relevant parts of a report to a decision maker and pin them to a 
dashboard.

Once a decision has been made on the most useful data visualization technique, it is 
important to choose the visual or visuals most appropriately suited for the data being dis-
played. Poorly chosen visuals can be hard to interpret or, worse, convey the wrong message. 
Another important aspect is the design of each visual. It’s not enough to choose the correct 
chart or graph for the job, analysts must also be consistent with the aspect and color scheme 
for their visuals. This will help keep end users focused on any insights that are displayed 
rather than being overwhelmed by clashing color patterns and inconsistent sizing. End users 
should be able to quickly interpret the message each visual is telling with little to no expla-
nation. The following sections include common visualizations used in analytical, reporting, 
and dashboarding tools. While these visualizations are popular and easy to build, there are 
countless more available for storytelling.

http://powerbi.com


36  Chapter 1  ■  Core Data Concepts

The data used to develop each of the visualizations discussed in the 
following sections comes from the AdventureWorksDW2019 sample 
database. Please visit https://docs.microsoft.com/en-us/sql/
samples/adventureworks-install-configure?view=sql-server-
ver15&tabs=ssms#download-backup-files for instructions on how 
to download and restore a backup of this database.

Table
A table is a grid that contains data that is ordered in rows and columns. Tables work well 
with quantitative comparisons where you are evaluating many values for a single category. 
Technologies such as Power BI Paginated Reports and SSRS format large tables to fit onto 
multiple pages make them easier to read. This type of reporting is known as paginated and 
has been used in BI solutions for decades. Figure 1.18 is an example of a table that lists the 
quantity sold and total sales amount for different bike subcategories sold online in different 
US regions.

Matrix
A matrix is a table that summarizes data into totals and subtotals for different groupings. In 
Figure 1.18 we can see that most bikes that are sold online in the United States are sold in 
the Northwest and Southwest sales territory regions. However, tables can become very hard 
to read if we start adding additional levels of granularity such as sales data for specific types 
of bikes. Matrices take care of this issue by providing a hierarchical structure that provides 
totals for multiple layers of granularity. Figure 1.19 is an example of a matrix that displays 
order quantity and sales totals for bikes, each bike subcategory, and each specific bike type 
sold online in the US Northwest and Southwest regions.

F IGURE 1.18   Table

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files


Describe Data Analytics Core Concepts  37

Column and Bar Charts
Bar and column charts enable organizations to see how a set of variables change across dif-
ferent categories. Both chart types represent data with rectangular bars. The difference bet-
ween the two is that if the rectangles are stacked horizontally, it is called a bar chart, and 
when they are aligned vertically, then it is a column chart. Figure 1.20 illustrates an example 
of a column chart that compares the total Internet sales amount for the different subcate-
gories of bikes sold in the US Northwest and Southwest sales territories.

F IGURE 1.20   Column chart

F IGURE 1.19   Matrix



38  Chapter 1  ■  Core Data Concepts

Line Chart
Line charts represent how a series of values change over time. Power BI enhances line charts 
by including a tooltip that provides more granular information for each data point on the 
x-axis. This is helpful if you are trying to prove a correlation between data points. Tooltips 
can be displayed by hovering your mouse over the x-axis value you would like to further 
analyze. Figure 1.21 illustrates an example of a line chart that compares monthly Inter-
net bike sales in 2011, 2012, and 2013 in the US West sales territory. This line chart also 
includes a tooltip displaying the Internet sales totals for the month of July in each year.

Pie Chart
Pie charts are useful for determining how responsible different categories are for a given 
value. Each category corresponds to a single slice of the pie, and the size of each slice indi-
cates the percentage of the whole pie each category is responsible for. Figure 1.22 illustrates 
an example of a pie chart that displays the total Internet bike sales for each country where a 
sale occurred as well as the percentage of the total sales that each country is responsible for.

F IGURE 1.21   Line chart



Describe Data Analytics Core Concepts  39

Scatter Plot
Scatter plots show the relationship between two numerical values. Power BI enhances scatter 
plots by including a tooltip that provides more granular information for each data point, or 
bubble. Tooltips can be displayed by hovering your mouse over the bubble you would like to 
further analyze. Figure 1.23 illustrates a simple example of a scatter plot chart that displays 
the correlation between the sales amount and order quantity for the different types of bikes 
sold online. The plot takes the analysis a step further by examining this correlation for the 
US Northwest and Southwest regions.

F IGURE 1.22   Pie chart

F IGURE 1.23   Scatter plot



40  Chapter 1  ■  Core Data Concepts

Map
Maps show the geographic distribution of data. These visualizations can show broad com-
parisons such as country or state sales information or very granular comparisons at the 
postal code, address, or latitude and longitude level. Figure 1.24 illustrates a map that dis-
plays cities in the US Pacific Northwest where bikes were bought online. The size of the 
bubble represents the total bike sales proportion that each city is responsible for.

Take special care when building visualizations that map data points for 
cities. Be sure to include specific information such as the country, state/
province, or postal code to mitigate the risk of plotting data in the wrong 
city. For example, if the data in the map in Figure 1.24 only provided 
sales information for “Salem” with no indication that the correct state is 
“Oregon,” the map may have incorrectly assumed that the data referred 
to Salem, Massachusetts.

Summary
The concepts included in this chapter cover the different categories of data, storage options, 
and processing patterns. This chapter also covered common analysis techniques and when to 
use different visualizations depending on what business questions you are trying to answer. 
Understanding these core definitions will help you design data solutions in Azure for any  
scenario.

F IGURE 1.24   Map



Exam Essentials  41

This chapter covered the following concepts:

Describe types of core data workloads.   The design strategy for a data solution comes 
down to what value will be provided by the solution, the volume of data the solution will 
store and process, the variety of data involved, and the velocity of the data being ingested. 
Solutions can be either a transactional workload, accounting for the business transactions 
that support the day-to-day operations of an organization, or an analytical workload that 
supports business users who need to make calculated business decisions from large amounts 
of data. These workloads can consist of structured, semi-structured, and unstructured data 
that can be stored in relational or nonrelational databases or as files in object storage. 
Cloud-based solutions can easily support requirements for data to be batch and stream 
processed.

Describe data analytics core concepts.   Data analytics is the process of turning raw data 
into information that is used to make important business decisions. First, raw data is 
extracted from source systems that are used to power a business and is either transformed 
first and then loaded into a destination data store or is loaded first and then transformed in 
the destination data store. Depending on the value being derived from the information, one 
or more analytics techniques can be applied to the processed data to view past performance 
and predict the most optimal actions to take advantage of future opportunities or prevent 
potential threats. Value is then exposed through several data visualization techniques so that 
decision makers can easily interpret the processed data and quickly make decisions that will 
ensure the success of their business.

Exam Essentials
Describe the characteristics of relational data.   Relational databases are data storage tech-
nologies that organize data into tables that can be linked based on data common to each 
other. Database tables store data as rows and are organized into a set number of columns. 
Relationships between tables allow users to easily query data from multiple tables at the 
same time. These databases also enforce schema integrity and maintain ACID rules, which 
makes them a good option for storing structured data. Relational databases are also critical 
for analytical workloads such as data warehouses because they structure data in a way that 
is easy to serve to reporting applications.

Describe the characteristics of nonrelational data.   Nonrelational data is data that requires 
flexibility in the way it is stored. Semi-structured data such as JSON and XML and unstruc-
tured data such as images or videos are some examples of nonrelational data. NoSQL 
databases can be used to store data with constantly changing schemas without forcing it to 
conform to a fixed structure. This allows queries that write and read data from these data-
bases to potentially perform much faster than a relational database. Object storage can be 
used to store unstructured data such as binary files that cannot be stored in a database.



42  Chapter 1  ■  Core Data Concepts

Describe batch data.   Batch processing is the practice of transforming groups, or batches, 
of data at rest. Data involved in batch processing solutions can come from any number 
of data stores, including relational, nonrelational, and files stored in object storage. Batch 
processing jobs can be scheduled to run at fixed time periods or when an event occurs, such 
as when a new transaction is added to a transactional data store. These jobs can process 
large amounts of data at a time and can be relied on to produce very accurate results since 
processing can take significant time to complete.

Describe streaming data.   Stream data is a continuous flow of data from some source. Data 
is processed in real time as it arrives in stream processing solutions. Each piece of data in a 
stream is often referred to as an event or a message and typically arrives in an unstructured 
or semi-structured format such as JSON. Streaming data solutions begin by ingesting data 
from a source such as an IoT sensor into a real-time message engine system that queues data 
for live processing or into an object store for on-demand processing. A stream processing 
engine such as Azure Stream Analytics is then used to transform the data, typically by time 
window, and write the transformed data either to an analytical data store or directly to a 
dashboard. Stream processing is ideal for solutions that require real-time analytics and do 
not need to process a large amount of data at once.

Describe the concepts of data processing.   Data processing is the methodology used 
to ingest raw data and transform it into one or more informative business models. Data 
processing solutions will either ingest data in batches or as a stream and can either store 
the data in its raw form or begin transforming it. Data can undergo several transformations 
such as being filtered, normalized, and aggregated before it is ready to be reported on. Data 
processing pipelines must include activities that are repeatable and flexible enough to handle 
a variety of scenarios.

Describe extract, transform, and load (ETL) and extract, load, and transform (ELT) 
processing.   Extract, transform, and load (ETL) is a data processing technique that extracts 
data from various sources, transforms the data according to business rules, and loads it into 
a destination data store. Data transformation takes place in a specialized technology and 
includes multiple operations. Before data is loaded into production tables, the data is typi-
cally stored in staging tables to temporarily store it as it is being transformed.

Extract, load, and transform (ELT) is like ETL but differs from ETL workflows only in 
where the transformations occur. Instead of using a separate transformation engine, ELT 
workflows transform data in the target data store. Data that is stored as flat files in scalable 
object storage such as Azure Data Lake Store Gen2 is mapped to a schema in the destination 
data store. This schema-on-read approach allows the destination data store to perform the 
necessary transformations on the data without needing to duplicate data. In these scenarios, 
the destination data store is typically a massively parallel processing (MPP) technology such 
as Spark or Azure Synapse Analytics, which are capable of processing large amounts of data 
at a time.

Describe how analytics tell the story of a business’s past, present, and future.   The maturity 
of an organization’s data analytics journey can be summarized by how well they are able to 
implement each category of analytics. From easiest to hardest, the analytics categories are 
descriptive, diagnostic, predictive, prescriptive, and cognitive. Descriptive analytics answer 



Exam Essentials  43

questions about what has happened, diagnostic analytics answer why things have happened, 
predictive analytics answer questions about what will happen, prescriptive analytics answer 
questions about what actions should be taken to achieve a target, and cognitive analytics 
derive inferences from existing data and patterns.

Describe data visualization techniques.   Data visualization techniques can be broken down 
into three core categories: analytical, reporting, and dashboarding. Analytical tools allow 
users the ability to access and manipulate very granular levels of data. Data scientists can use 
these tools to create highly customized visualizations to display insights over several differ-
ent scenarios. Reporting tools give analysts the ability to organize data into informational 
summaries to monitor how different areas of the organization are performing. Reports built 
with these tools can be either static or dynamic depending on how interactive analysts want 
their reports to be. Dashboarding tools provide quick overviews of the most relevant visuals 
to decision makers. Dashboards empower decision makers to quickly act on opportunities or 
threats as they arise.

Choosing the right type of infographic to display information is critical to the success of 
a data analytics solution. Poorly chosen visualizations can be hard to interpret or, worse, 
convey the wrong message. Another important aspect is the design of each visual. It’s not 
enough to choose the correct chart or graph for the job, but analysts must also be consistent 
with the aspect and color scheme for their visuals. This will help keep end users focused on 
any insights that are displayed rather than being overwhelmed by clashing color patterns and 
inconsistent sizing.



44  Chapter 1  ■  Core Data Concepts

Review Questions
1.	 Which of the following technologies is not an example of a real-time message inges-

tion engine?

A.	 Azure IoT Hub

B.	 Azure Event Hubs

C.	 Azure SQL Database

D.	 Apache Kafka

2.	 Is the underlined portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below?

DML statements include INSERT, UPDATE, and DELETE commands.

A.	 GRANT, DENY, and REVOKE.

B.	 SELECT, INSERT, UPDATE, and DELETE.

C.	 BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK TRANSAC-
TION.

D.	 No change is needed.

3.	 You are the data architect for a game company and are designing the database tier for a new 
game. The game will be released globally and is expected to be well received with potentially 
millions of people concurrently playing online. Gamers are expecting the game to be able 
to integrate with social media platforms so that they can stream their sessions and in-game 
scores in real time. Which of the following database platforms is the most appropriate for 
this scenario?

A.	 Azure Cosmos DB supports millisecond reads and writes to avoid lags during gameplay 
and can easily integrate with social features.

B.	 Azure SQL Database is necessary because this workload is transactional by nature.

C.	 Azure Synapse Analytics dedicated SQL pool is necessary to analyze millions of user 
data at the same time.

D.	 Azure Cache to support in-memory storage of each player and their related gamer meta-
data.

4.	 You are developing a real-time streaming solution that processes data streamed from differ-
ent brands of IoT devices. The solution must be able to retrieve metadata about each device 
to determine the unit of measurement each device uses. Which of the following options 
would serve as a valid solution for this use case?

A.	 Process the IoT data on demand and store it in micro-batches in Azure Blob Storage 
with the static reference data. Azure Databricks Structured Streaming can process both 
datasets from Azure Blob Storage to retrieve the required information.

B.	 Process the IoT data live and use static data stored in Azure Blob Storage to provide 
the necessary metadata for the solution. Azure Stream Analytics supports Azure Blob 
Storage as the storage layer for reference data.

C.	 This cannot be done in real time.

D.	 Either A or B will work.



Review Questions  45

5.	 Which of the following is an example of a nonrelational data store?

A.	 Azure Blob Storage

B.	 Azure Cosmos DB

C.	 MongoDB

D.	 All of the above

6.	 You are a data architect at a manufacturing company. You were recently given a project 
to design a solution that will make it easier for your company’s implementation of Azure 
Cognitive Search to analyze relationships of employees and departments. Which of the fol-
lowing is the most efficient solution for this project?

A.	 Use the Azure Cosmos DB Gremlin API to store the entities and relationships for fast 
query results.

B.	 Store the departments and employees as values in an Azure SQL Database relational 
model.

C.	 Store the data as Parquet files in Azure Data Lake Store Gen2 and then query the rela-
tionships using Azure Databricks.

D.	 Denormalize the data into column families using the Azure Cosmos DB Cassandra API.

7.	 You are designing a solution that will leverage a machine learning model to identify differ-
ent endangered species that inhabit different wildlife reservations. Part of this solution will 
require you to train the model against images of these animals so that it knows which animal 
is which. What storage solution should you use to store the images?

A.	 Azure SQL Database’s FILESTREAM feature

B.	 Azure Blob Storage

C.	 Azure Data Lake Storage Gen2

D.	 Azure Cosmos DB Gremlin API

8.	 You are the administrator of a data warehouse that is hosted in an Azure Synapse Analytics 
dedicated SQL pool instance. You choose to transform and load data using ELT to eliminate 
the number of hops data must go through to get from your data lake environment to the data 
warehouse. Which of the following technologies provides the most efficient way to load data 
into the Azure Synapse Analytics dedicated SQL pool instance through ELT?

A.	 Azure Databricks

B.	 Azure Stream Analytics

C.	 COPY statement

D.	 Azure Data Factory

9.	 Is the underlined portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below?

Azure SQL Database is an example of an MPP system.

A.	 Azure Data Factory.

B.	 Azure Synapse Analytics dedicated SQL pool.

C.	 Azure Batch.

D.	 No change is needed.



46  Chapter 1  ■  Core Data Concepts

10.	 You are a data engineer for a retail company that sells athletic wear. Company decision 
makers rely on updated sales information to make decisions based on buying trends. New 
data must be processed every night so that reports have the most recent sales information by 
the time decision makers examine the reports. What type of processing does this describe?

A.	 Transactional processing

B.	 Stream processing

C.	 Scheduled processing

D.	 Batch processing

11.	 As the data architect for your retail firm, you have been asked to design a solution that will 
process large amounts of customer and transaction data every night and store it in your 
Azure Synapse dedicated SQL pool data warehouse for analysis. There are multiple sources 
of data that must be processed to ensure that analysts are able to make the most appro-
priate business decisions based on these datasets. The solution must also be easy to maintain 
and have the minimal operational overhead. Which of the following is the most appropriate 
choice for this solution?

A.	 Create Azure Data Factory mapping data flows to process each entity and add them to a 
control flow in ADF to be processed in the correct order every night.

B.	 Develop the data flows in Azure Databricks and schedule them through an Azure Data-
bricks job to run every night.

C.	 Create SSIS jobs in an Azure VM to process each entity and add them to a control flow 
in SSIS to be processed in the correct order every night.

D.	 Create workflows in Azure Logic Apps to process each entity every night.

12.	 Is the underlined portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below?

Descriptive analytics answer questions about why things happened.

A.	 Predictive.

B.	 Cognitive.

C.	 Diagnostic.

D.	 No change is needed.

13.	 Is the underlined portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below?

Matrices can be used to display totals and subtotals for different groups of categorical data.

A.	 Tables.

B.	 Bar charts.

C.	 Scatter plots.

D.	 No change is needed.



Review Questions  47

14.	 You are responsible for designing a report platform that will provide your leadership team 
with the information necessary to build the company’s long-term and short-term strategy. 
Analysts must be able to build interactive visualizations with the least amount of complexity 
to provide executives recommendations based on business performance and customer trends. 
Analysts will also need to be able to create views of the most critical pieces of information 
for executives to consume. These views are the only pieces of the platform that executives 
need to have access to. Which of the following is the most appropriate choice given the 
requirements?

A.	 Give analysts the ability to create and interact with reports in Power BI while also hav-
ing them create dashboards for executives. Executives will only need access to Power BI 
dashboards.

B.	 Give analysts and executives the ability to create and interact with reports in Power BI. 
This will give executives the ability to build dashboards for time-sensitive decision mak-
ing.

C.	 Recommend that analysts build infographics in a Jupyter Notebook with Python or R as 
this is the only way to build the dashboards the executives require.

D.	 Give analysts the ability to build static reports with SSRS and pin the most important 
SSRS visualizations to a Power BI dashboard.

15.	 You are a report designer for a retail company that relies on online sales. Your boss has 
requested that you add a visualization to the executive performance dashboard that will 
show sales patterns over the last three years. Which of the following is the most appro-
priate options?

A.	 Column chart

B.	 Line chart

C.	 Scatter plot

D.	 Matrix

16.	 As the chief data scientist of a large bike company, you have been tasked with designing a 
bot service that customers can use to receive guidance on their bike maintenance. The bot 
must be able to learn as new queries are issued to it so that it can improve the quality of its 
responses. What type of analytics is this an example of?

A.	 Cognitive analytics

B.	 Prescriptive analytics

C.	 Predictive analytics

D.	 Diagnostic analytics





Relational 
Databases in Azure

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe relational data workloads.

■■ Identify the right data offering for a relational workload.

■■ Describe relational data structures (e.g., tables, 

indexes, views).

✓✓ Relational Database Offerings in Azure.

■■ Describe Azure SQL database services such as Azure SQL 

Database, Azure SQL Managed Instance, and SQL Server on 

Azure Virtual Machine.

■■ Describe Azure Synapse Analytics.

■■ Describe Azure Database for PostgreSQL, Azure Database for 

MariaDB, and Azure Database for MySQL.

✓✓ Identify basic management tasks for relational data.

■■ Describe provisioning and deployment of relational 

data services.

■■ Describe method for deployment including the Azure portal, 

Azure Resource Manager templates, Azure PowerShell, and 

the Azure command-line interface (CLI).

■■ Identify data security components (e.g., firewall, 

authentication).

■■ Identify basic connectivity issues (e.g., accessing from on-

premises, access with Azure VNets, access from Internet, 

authentication, firewalls).

■■ Identify query tools (e.g., Azure Data Studio, SQL Server 

Management Studio, sqlcmd utility, etc.).

Chapter 

2



✓✓ Describe query techniques for data using 
SQL language.

■■ Compare Data Definition Language (DDL) versus Data 

Manipulation Language (DML).

■■ Query relational data in Azure SQL Database, Azure 

Database for PostgreSQL, and Azure Database 

for MySQL.



Relational databases have been critical components to organi-
zations’ IT infrastructure for the last few decades. They are the 
most common way to store data due to their ease of use, the 

wide variety of solutions they can support, and the well-established best practices with which 
they are designed. Relational databases are useful for storing data elements that are related 
and must be stored in a consistent manner. This chapter will discuss the key features of a 
relational database, the different relational database offerings in Azure, basic management 
tasks for relational databases, and common query techniques for relational data.

Relational Database Features
Relational databases store data as collections of entities in the form of tables. In the context 
of data, entities can be described as nouns, such as persons, companies, countries, or prod-
ucts. Tables contain structured data that describes an entity and are composed of zero or 
more rows and one or more columns of data. Some of the columns might be special columns 
that are used to uniquely identify each row or act as a reference to another table that they 
might be related to. Rows might not include values for each column, but because relational 
databases are designed with a rigid schema, the row will still include that column in its defi-
nition. Default or null values are used when a value is not provided for a row. This organized 
approach to data storage allows relationships between entities that can easily be queried by 
a data analyst or a data processing solution. Let’s examine the features of a relational data-
base, starting with design considerations.

Relational Database Design Considerations
Design considerations for relational databases largely depend on what type of solution the 
database will be powering. As discussed in Chapter 1, “Core Data Concepts,” relational 
databases are commonly used to power online transaction processing (OLTP) and analyt-
ical systems. Solutions that are powered by OLTP databases have different write and read 
requirements than that of an analytical database. Even though OLTP databases often serve 
as data sources for data warehouses or online analytical processing (OLAP) systems, these 
requirements make it necessary to distribute and store data differently in each system.



52  Chapter 2  ■  Relational Databases in Azure

OLTP Workload Design Considerations
Transactional data that is stored in an OLTP database involve interactions that are 
related to an organization’s activities. These can include payments received from cus-
tomers, payments made to suppliers, or orders that have been made. Typical OLTP data-
bases are optimized to handle data that is written to them and must be able to ensure that 
transactions adhere to ACID properties (see Chapter 1 for more information on ACID 
properties). This will guarantee the integrity of the records that are stored. Relational 
database management systems (RDBMSs) typically enforce these rules using locks or row 
versioning.

Regardless of whether a transaction is reading, inserting, updating, or deleting data, 
the data involved in the transaction must be reliable. This becomes even more true as the 
number of users running transactions concurrently on the same pieces of data increases, 
resulting in the following issues:

■■ Dirty reads can occur when a transaction is reading data that is being modified by 
another transaction. The transaction performing the read is reading the modified data 
that has not yet been committed. This potentially results in an inaccurate result set if the 
transaction modifying the data is rolled back to the original values.

■■ Nonrepeatable reads occur when a transaction reads the same row several times and 
returns different data each time. This is the result of one or more other transactions 
being able to modify the data between the reads within the transaction.

■■ Phantom reads occur when two identical queries running in the same transaction return 
different results. This can happen when another query inserts some data in between 
the execution of the two queries, resulting in the second query returning the newly 
inserted data.

To mitigate these issues, a transaction will request locks on different types of resources, 
such as rows and tables, that the transaction is dependent on. Transaction locks prevent 
dirty, nonrepeatable, and phantom reads by blocking other transactions from performing 
modifications on data objects involved in the transaction. Transactions will free their locks 
from a resource once they have finished reading/modifying it. While locks are critical for 
ensuring consistency, they can cause long wait times for users that have issued transactions 
that are being blocked. The following isolation levels can be assigned to a transaction to 
balance consistency versus performance depending on its requirements:

■■ Read Uncommitted is the lowest isolation level, only guaranteeing that physically cor-
rupt data is not read. Transactions using this isolation level run the risk of returning 
dirty reads since uncommitted data is read.

■■ Read Committed transactions issue locks on involved data at the time of data modifica-
tion to prevent other transactions from reading dirty data. However, data can be modi-
fied by other transactions, which can result in nonrepeatable or phantom reads. This is 
the default isolation level for SQL Server and Azure SQL Database.



Relational Database Features  53

■■ Repeatable Read transactions issue read and write locks on involved data until the end 
of the transaction. No other transaction can modify data involved by a repeatable read 
transaction until the transaction has completed. However, other transactions can insert 
new rows into tables involved in a repeatable read transaction. This could possibly 
result in phantom reads occurring.

■■ Serializable is the highest isolation level and completely isolates transactions from one 
another. Statements cannot read data that has not yet been committed by a transaction 
with serializable isolation. What’s more is that statements cannot modify data that is 
being read by a transaction whose isolation is set to serializable.

SQL Server and Azure SQL Database also allow users to use row versioning to main-
tain versions of rows that are modified. Transactions can be specified to use row versions to 
view data as it existed at the start of the transaction instead of protecting it with locks. This 
allows the transaction to read a consistent copy of the data while mitigating performance 
concerns from locking. The following isolation levels support row versioning:

■■ Read Committed Snapshot is a version of the Read Committed isolation level that uses 
row versioning to present each statement in the transaction with a consistent snapshot 
of the data as it existed at the beginning of the statement. Locks are not used to protect 
the data from updates by other transactions. To enable Read Committed Snapshot, set 
the READ_COMMITTED_SNAPSHOT database option to ON.

■■ Snapshot isolation uses row versioning to return rows as they existed at the start of the 
transaction, regardless of whether another transaction modifies those rows. To enable 
Snapshot isolation, set the ALLOW_SNAPSHOT_ISOLATION database option to ON.

Since each version is stored in tempdb, special maintenance consider-
ations must be taken into consideration. Please refer to the following 
link for more information on isolation levels based on row versioning: 
https://docs.microsoft.com/en-us/sql/relational-databases/
sql-server-transaction-locking-and-row-versioning-
guide?view=sql-server-ver15#Row_versioning.

Maintaining ACID compliancy while also ensuring a premium performance experience 
is no easy task. Design best practices for OLTP databases are able to accomplish this by 
breaking up data into smaller chunks that are less redundant, also known as data normaliza-
tion. There are a few rules for data normalization, which can be defined as follows:

■■ First normal form (1NF) involves eliminating repeating groups in individual tables, cre-
ating separate tables for each set of related data, and identifying each set of related data 
with a primary key. This is essentially stating that you should not use multiple fields in 
a single table to store similar data. For example, a retail company may have customers 
that make multiple orders at different periods of time. Instead of duplicating the cus-
tomers’ information each time they place an order, place all customer information in a 
separate table called Customers and identify each customer with a unique primary key.

https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver15#Row_versioning
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver15#Row_versioning
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver15#Row_versioning


54  Chapter 2  ■  Relational Databases in Azure

■■ Second normal form (2NF) takes 1NF a step further. Along with the rules that define 
1NF, 2NF also involves creating separate tables for sets of values that apply to multiple 
records and then relating those tables via a foreign key. For example, if a customer’s 
address is needed by the Customer, Order, and Shipping tables, separate the addresses 
into a single table such as the Customer table or their own Address table.

■■ Third normal form (3NF) builds on 1NF and 2NF by including a requirement to elim-
inate fields in tables that do not depend on the key. For example, let’s assume that each 
product being sold by the retail company includes several subcategories. If each sub-
category is stored in the Products table, then each product will be duplicated numerous 
times to include each subcategory. In this case, it is more efficient to create a Product 
Subcategory table and relate it to the Products table.

The more normalized a database is, the more efficiently the database will handle write 
operations. This is because normalized data avoids extra processing for redundant data. Typ-
ical OLTP databases follow 3NF to ensure that database writes are as efficient as possible. 
Figure 2.1 is a partial example of the AdventureWorks OLTP entity relationship diagram 
(ERD), focusing on entities that are related to products manufactured and sold by Adven-
tureWorks. The entire ERD can be found at https://dataedo.com/download/ 
AdventureWorks.pdf.

F IGURE 2 .1   OLTP ERD

https://dataedo.com/download/AdventureWorks.pdf
https://dataedo.com/download/AdventureWorks.pdf


Relational Database Features  55

In this diagram, every entity that has multiple records is broken up into multiple tables to 
avoid redundant data storage. Entities that are related to one another can be related one or 
many times. For example, each product category has multiple product subcategories. There-
fore, the relationship between the ProductCategory table and the ProductSubcategory table 
is one-to-many. The crow’s feet shape in the relationship signals that there are many product 
subcategories for each product category.

While this level of data normalization is highly efficient for writing and storing individual 
transactions, it can be less efficient for applications that perform large numbers of read oper-
ations. Queries that are issued from read-heavy applications (e.g., reporting and analytical 
applications) potentially require many joins to de-normalize the data, making these queries 
very long and complex. Read operations that perform aggregations over large amounts of 
data are also very resource intensive for OLTP databases and can cause blocking issues for 
other transactions issued against the database. It is for these reasons that analytical data-
bases carry different design best practices than their OLTP counterparts.

Analytical Workload Design Considerations
Data warehouses and online analytical processing (OLAP) systems are optimally designed 
for read-heavy applications. While OLTP systems focus on storing current transactions, data 
warehouses and OLAP models focus on storing historical data that can be used to measure a 
business’s performance and predict what future actions it should take.

Data warehouses serve as central repositories of data from one or more disparate data 
sources, including various OLTP systems. Not only does this eliminate the burden of running 
analytical workloads from the OLTP database, it also enriches the OLTP data with other 
data sources that provide useful information for decision makers. Data warehouses can 
store data that is processed in batch and in real time to provide a single source of truth for 
an organization’s analytical needs. Data analysts commonly run analytical queries against 
data warehouses that return aggregated calculations that can be used to support business 
decisions.

Data warehouses can be built using one of the SMP database offerings on Azure, such 
as Azure SQL Database, or on the MPP data warehouse Azure Synapse Analytics dedicated 
SQL pools. The choice largely depends on the amount of historical data that is going to be 
stored and the nature of the queries that will be issued to the data warehouse. A good rule of 
thumb is that if the size of the data warehouse is going to be less than 1 terabyte, then Azure 
SQL Database will do the trick. However, this is a general statement, and more consideration 
is needed when deciding between SMP or MPP. Chapter 5, “Modern Data Warehouses in 
Azure,” covers more detail on what to consider when designing a modern data warehouse.

OLAP models extract commonly used data for reporting from data warehouses to sim-
plify data analysis. Like data warehouses, OLAP models are used for read-heavy scenarios 
and typically include the following predefined features to allow users to see consistent results 
without having to write their own logic:

■■ Aggregations that can be immediately reported against

■■ Time-oriented calculations



56  Chapter 2  ■  Relational Databases in Azure

OLAP models come in two flavors: multidimensional and tabular. Multidimensional 
cubes such as those created with SQL Server Analysis Services (SSAS) were used in tradi-
tional business intelligence (BI) solutions to serve data as dimensions and measures. Tab-
ular models such as Azure Analysis Services and models built in Power BI serve data using 
relational modeling constructs (e.g., tables and columns) while storing metadata as multidi-
mensional modeling constructs (e.g., dimensions and measures) behind the scenes. Tabular 
models have become the standard for OLAP models as they use similar design patterns to 
relational databases, make use of columnar storage that optimally compresses data for ana-
lytics and leverages an easy-to-learn language (DAX) that data analysts can use to create 
custom metrics. Chapter 6, “Reporting with Power BI,” will describe in detail tabular models 
and how they are used in Power BI.

Data warehouses and OLAP models store data in a way that is designed to be easy for 
analysts and developers to read. Tables in analytical systems are defined to be easily under-
stood by business users so that they do not have to rely on IT every time they need to 
produce new analysis against historical data. Instead of using strict nomenclature and nor-
malized rules that make OLTP systems ideal for storing transactional data, analytical sys-
tems flatten data so that business users can easily query data without having to join several 
tables together.

One common design pattern for data warehouses and OLAP models is the star schema. 
Star schemas denormalize data taken from OLTP systems, resulting in some attributes being 
duplicated in tables. This is done to make the data easier for analysts to read, allowing them 
to avoid having to join several tables in their queries. While de-normalization is not optimal 
for write-heavy, transactional workloads, it will increase the performance of read-oriented, 
analytical workloads.

Star schemas work by relating business entities, also known as the nouns of the business, 
to measurable events. These can be broken down into the following classifications that are 
specific to a star schema:

■■ Dimension tables store information about business entities. Dimension tables store 
descriptive columns for each entity and a key column that serves as a unique identifier. 
Examples include date, customer, geography, and product dimensions. Dimension tables 
typically store a relatively small number of rows but many columns, depending on how 
many descriptors are necessary for a given dimension.

■■ Fact tables store measurable observations or events such as Internet sales, inventory, or 
sales quotas. Along with numeric measurements, fact tables contain dimension key col-
umns for each dimension that a measure or observation is related to. These relationships 
determine the granularity of the data in the fact table. For example, an Internet sales fact 
table that has a dimension key for date is only as granular as the level of detail stored in 
the date dimension table. If the date dimension table only includes details for years and 
months, then queries performing time-based calculations will only be able to drill down 
to monthly sales. However, if it includes details for years, quarters, months, weeks, days, 
and hours, then queries will be able to perform more fine-grained analysis of the data.

Figure 2.2 is a partial example of the AdventureWorks DW star schema, focusing on 
dimensions and facts related to Internet sales for products manufactured and sold by 



Relational Database Features  57

AdventureWorks. The entire diagram can be found at https://dataedo.com/samples/
html/Data_warehouse/doc/AdventureWorksDW_4/modules/Internet_Sales_101/
module.html.

This diagram shows the relationship between the nouns involved in an online sale and the 
associated metrics. While not illustrated in the image, if you go to the link in the preceding 
paragraph, you will find more details on each dimension table and will see that they have 
many columns that provide high granularity for the sales metrics.

OLAP models take star schemas a step further by including business logic and predefined 
calculations that are ready to be used in reports. This level of abstraction that allows users 
to focus on building business-critical reports without needing to write SQL queries that 

F IGURE 2 .2   Star schema

https://dataedo.com/samples/html/Data_warehouse/doc/AdventureWorksDW_4/modules/Internet_Sales_101/module.html
https://dataedo.com/samples/html/Data_warehouse/doc/AdventureWorksDW_4/modules/Internet_Sales_101/module.html
https://dataedo.com/samples/html/Data_warehouse/doc/AdventureWorksDW_4/modules/Internet_Sales_101/module.html


58  Chapter 2  ■  Relational Databases in Azure

perform aggregations and joins over the underlying data is known as a semantic layer. 
Semantic layers are typically placed over data pulled from a data warehouse. Along with the 
business-friendly names that come with a star schema, semantic layers store calculations that 
allow users to easily filter and summarize data.

Relational Data Structures
Relational databases are composed of several different components. Take an OLTP database 
that powers a retail company’s POS for example. This database probably has a customer 
table that contains rows for every customer that has made a purchase. The table can include 
columns for each customer’s first name, last name, phone number, address, and more. Every 
column has a predefined data type that inserted values must adhere to. If a customer chooses 
not to give a piece of information such as their phone number, a null value can be added as 
a placeholder so that the row maintains the structure of the table’s schema. Every row is also 
assigned an ID that uniquely identifies the customer, also known as a primary key. Some col-
umns, such as the ID column, are also used to relate to other tables such as one that stores 
more information about the products involved in a purchase. This is known as a foreign key. 
The customer table can also include indexes that optimize how the data is organized so that 
queries can quickly retrieve data. These database structures and others are defined in the fol-
lowing sections.

Tables

Tables are structured database objects that store all the data in a database. Data is organized 
into rows and columns, with rows representing records of data and columns representing a 
field in the record. Along with user-defined tables that persist data, users can choose to create 
temporary tables that briefly store data that does not need to be persisted long term. These 
come in two varieties:

■■ Local temporary tables are only visible to the instance of a user connection, also 
known as a session, that they are built in. They are deleted as soon as the session is 
disconnected.

■■ Global temporary tables are visible to any user after they are created and are deleted 
when all user sessions referencing the table are disconnected.

SMP and MPP databases allow users to create partitions on tables to horizontally dis-
tribute data across multiple filegroups in a database. This makes large tables easier to man-
age by allowing users to access individual partitions of data quickly and efficiently while the 
integrity of the overall table is maintained. MPP systems such as Azure Synapse Analytics 
dedicated SQL pools take this a step further. Along with being able to partition data across 
filegroups, MPP systems spread data across multiple distributions on one or more compute 
nodes. The types of distributed tables available in Azure Synapse Analytics dedicated SQL 
pools and when to use each are covered in Chapter 5, “Modern Data Warehouses in Azure.”

Views

Views are virtual tables whose contents are defined by a query. The rows and columns of 
data in a view come from tables referenced in the query that define the view. They act as a 



Relational Database Features  59

virtual layer to filter and combine data from regularly queried tables. Users can simplify their 
queries since views handle the complex filtering and joining of data that would normally 
need to be handled by the user. They are also useful security mechanisms as users do not 
need permission to the underlying tables that make up the views.

Figure 2.3 is an example of a view definition taken from the AdventureWorks OLTP data-
base. This view queries the ProductModel, ProductModelProductDescriptionCulture, and 
ProductDescription tables to compile a list of products sold and their descriptions in mul-
tiple languages.

This view allows users querying product description information to simplify their queries 
from performing joins on multiple tables to only reading from one database object.

A special type of view that can be used to improve the performance of complex analytical 
queries that are issued against large data warehouse datasets are materialized views. Unlike 
regular views that are generated each time the view is used, materialized views are prepro-
cessed and stored in the data warehouse. The data stored in a materialized view is updated 
as it is updated in the underlying tables. Materialized views that are defined by complex 
analytical queries improve performance and reduce the amount of time required to prepare 
data for analysis by pre-aggregating data and storing it in a manner that is ready to be used 
in reports.

To create a materialized view in Azure Synapse Analytics dedicated SQL 
pools, you will need to issue a CREATE MATERIALIZED VIEW statement 
instead of a CREATE VIEW statement that you would with a normal view. 
Materialized views also require an explicit distribution type, like tables 
stored in dedicated SQL pools. More on distribution types in Chapter 5, 
“Modern Data Warehouses in Azure.”

F IGURE 2 .3   View definition



60  Chapter 2  ■  Relational Databases in Azure

Indexes

Consider the index at the end of this book. Its purpose is to sort keywords and provide each 
keyword’s location in the book. Database indexes work very similarly in that they sort a 
list of values and provide pointers to the physical locations of those values. Ideally, indexes 
are designed to optimize the way data is stored in database tables to best serve the types of 
queries that are issued to them.

Depending on the workload, indexes physically store data in a row-wise format (row-
store) or a column-wise format (columnstore). If queries are searching for values, also 
known as seeks, or for a small range of values, then rowstore indexes such as clustered and 
nonclustered indexes are ideal. On the other hand, columnstore indexes are best for database 
tables that store data that is commonly scanned and aggregated. The following are descrip-
tions of the three commonly used types of indexes:

■■ Clustered indexes physically sort and store data based on their values. There can only be 
one clustered index because clustered indexes determine the physical order of the data. 
Columns that include mostly unique values are ideal candidates for clustered indexes. 
Clustered indexes are automatically created on primary key columns for this reason.

■■ Nonclustered indexes contain pointers to where data exists. There can be more than one 
nonclustered index on a database, and each one can be composed of multiple columns 
depending on the nature of the queries issued to the database. For example, queries that 
return data based on specific filter criteria can benefit from a nonclustered index on the 
columns being filtered. The nonclustered index allows the database engine to quickly 
find the data that matches the filter criteria.

■■ Columnstore indexes use column-based data storage to optimize the storage of data 
stored in a data warehouse. Instead of physically storing data in a row-wise format like 
that of a clustered or nonclustered index, columnstore indexes store data in a column-
wise format. This provides a high level of compression and is optimal for analytical 
queries that perform aggregations over large amounts of data.

Proper index design can be the difference between a poorly performing database and one 
that runs like a charm. While index design best practices are out of scope for this book, I rec-
ommend the following article for guidelines on choosing an index strategy: https://docs 
.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-
guide?view=sql-server-ver15.

Stored Procedures

Stored procedures are groups of one or more T-SQL statements that perform actions on data 
in a database. They can be executed manually or via an external application (e.g., custom 
.NET application, Azure Data Factory). They can also be scheduled to run at predetermined 
periods of time with a SQL Server Agent job, such as every hour or every night at midnight. 
Stored procedures can accept input parameters and return multiple values as output parame-
ters to the application calling them.

Code that is frequently used to perform database operations is an ideal candidate to 
be encapsulated in stored procedures. This eliminates the need to rewrite the same code 

https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver15


Relational Database Offerings in Azure  61

repeatedly, which also reduces the chances of errors from code inconsistency. The applica-
tion tier is also simplified since applications will only need to execute the stored procedure 
instead of needing to maintain and run entire blocks of T-SQL code.

Functions

Functions are like stored procedures in that they encapsulate commonly run code. The major 
difference between a user-defined function in SQL and a stored procedure is that functions 
must return a value. Stored procedures can be used to make changes to data without ever 
returning a response to the user running the stored procedure. Functions, on the other hand, 
can only return data that is typically the result of a complex calculation. Functions accept 
parameters and return values as either a single scalar value or a result set.

Triggers

Triggers are T-SQL statements that are executed in response to a variety of events. These 
events can be DDL, DML, or login related. Triggers are typically used when you want to do 
the following:

■■ Prevent certain changes to columns in tables.

■■ Perform an action based on a change to database schemas or underlying data.

■■ Log changes to the database schema.

■■ Enforce relational integrity throughout the database.

Relational Database Offerings in Azure
Until recently, most organizations hosted their database systems in on-premises datacen-
ters that they owned or leased. They were responsible for applying updates to the data-
base software and had to make sure that the hardware hosting the databases was properly 
maintained. Business continuity aspects such as database backup management, high avail-
ability (HA), and disaster recovery (DR) standards would need to be implemented to ensure 
minimal downtime in case of database corruption or server downtime. Scalability is also 
a concern, as database servers that outgrow compute allocated to them require someone 
to physically add compute to the server. All these items require additional hardware and 
levels of expertise from employees, thus increasing the total cost of ownership (TCO) for 
a database.

Cloud-based hosting has fundamentally shifted how organizations calculate TCO for 
their relational databases. Many operations that surround database upgrades or patching, 
business continuity, and scalability are handled by the cloud company. This allows organi-
zations to shift their focus from maintaining hardware and managing business continuity 
concerns to being able to purely focus on the needs of the database users. Provisioning and 
scaling a database is also much easier as almost every requirement is preconfigured. Shortly 
put, databases can be easily deployed in Azure with the click of a button and scaled up and 
down with a slider (more on this later in the chapter).



62  Chapter 2  ■  Relational Databases in Azure

Before getting into the different relational databases offerings in Azure, it’s important to 
understand the three types of cloud computing services. Having a foundational knowledge of 
how each of these are implemented is paramount to understanding the responsibilities and 
the TCO for hosting a database on Azure.

■■ Infrastructure as a Service (IaaS) offerings in Azure provide customers with the ability 
to create virtual infrastructure that mirrors an on-premises environment. IaaS offerings 
give organizations the ability to easily migrate their on-premises infrastructure to sim-
ilar IaaS-based offerings in Azure without needing to completely redesign their applica-
tions using a cloud native approach. This is a typical first step for moving to the cloud 
as it allows organizations to offload the management of their hardware to Microsoft 
using a lift-and-shift strategy. While IaaS deployments allow organizations to no longer 
worry about maintaining the hardware powering an application, they will still need to 
manage maintenance at the operating system (OS) and application level. IaaS offerings 
include virtual machines that host services that would typically be hosted in a customer’s 
on-premises environment, such as SQL Server, and are connected via an Azure Virtual 
Network (VNet). These services can easily connect to an organization’s existing network 
infrastructure, allowing them to utilize a hybrid cloud strategy.

■■ Platform as a Service (PaaS) takes IaaS a step further by abstracting the OS and applica-
tion software from the user. When deploying a PaaS offering, organizations can specify 
the resources they would like deployed, an initial size and compute tier depending on 
the intensity of the workload, what Azure region they would like them deployed to, and 
other optional or service-specific requirements. Azure will then provision the necessary 
resources to meet those specific requirements. Once deployed, all OS and software main-
tenance such as business continuity, upgrades, and patches are handled by Azure. This 
allows organizations to minimize the amount of effort required to maintain these ser-
vices and instead focus on using them to build solutions that impact the business. Like 
IaaS offerings, PaaS offerings can also be interconnected via a VNet and connected to an 
organization’s existing on-premises network infrastructure. PaaS services include Azure 
SQL Database, Azure SQL Managed Instance (MI), and all the open-source relational 
database offerings that are hosted on Azure SQL.

■■ Software as a Service (SaaS) offerings represent the highest level of abstraction available 
to an organization hosting its infrastructure and applications on the cloud. Organiza-
tions simply purchase the number of licenses required for the service and then use it. 
Typical examples of SaaS offerings include Power BI Online and Office 365. None of the 
relational database offerings discussed in this chapter are SaaS offerings.

IaaS, PaaS, and SaaS are critical components of the Microsoft Azure 
Fundamental AZ-900 exam. If you would like to learn more about the 
three types of cloud computing services, please read Jim Boyce’s Micro-
soft Certified Azure Fundamental Exam Guide (Wiley, 2021). This book 
provides a fundamental knowledge of Azure and provides further in-
depth information on IaaS, PaaS, and SaaS applications.



Relational Database Offerings in Azure  63

Azure SQL
Azure SQL is a broad term used to describe the family of SMP relational database products 
in Azure that are built upon Microsoft’s SQL Server engine. These include one IaaS option 
with SQL Server on Azure Virtual Machines (VM) and two PaaS options with Azure SQL 
MI and Azure SQL Database. Azure SQL Database can be broken down even further into 
two different options: single database and elastic pool. There are also several service tiers 
available for each offering that best suit different types of workloads. With so many options 
available, organizations must weigh several factors when deciding which Azure SQL option 
is the most appropriate for their use cases:

■■ Cost—All three options include a base price that covers underlying infrastructure and 
licensing. Each option also includes hybrid licensing benefits that allow organizations 
to apply on-premises SQL Server licenses to reduce the cost of the service. Keep in mind 
that hosting a database in a virtual machine will require additional administration 
overhead that the PaaS options don’t require.

■■ Service-level agreement (SLA)—All three options provide high, industry-standard SLAs. 
PaaS options guarantee a 99.99 percent SLA, while IaaS guarantees a 99.95 percent SLA 
for infrastructure, meaning that organizations will need to implement additional mecha-
nisms to ensure database availability. You can refer to the following documentation for 
more information regarding Azure SQL SLAs: https://docs.microsoft.com/en-
us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#service-
level-agreement-sla.

■■ Migration timeline—This is a factor that must be considered if an organization is 
migrating to Azure as opposed to building an application from scratch with a cloud 
native design. Organizations may consider one option over the other depending on how 
long the timeline is. For example, databases can be migrated to a virtual machine in a 
relatively short amount of time because virtual machines can host the same version of 
SQL Server as an on-premises SQL Server instance. Azure SQL MI also provides nearly 
the same feature parity as an on-premises SQL Server, but some changes may need to be 
applied, especially if the database that will be migrated is hosted on an older version of 
SQL Server.

■■ Administration—Azure SQL Database and Azure SQL MI minimize overhead by 
managing typical database administration activities such as database backups, patches, 
version upgrades, HA, and threat protection. However, this also limits the range of 
custom administrative activities that can be performed.

■■ Feature parity—Because Azure SQL Database abstracts the OS and database server 
components from the user, there are certain features of SQL Server that are not sup-
ported in Azure SQL Database. These include cross-database joins, CLR integration, and 
SQL Server Agent. Azure SQL MI is nearly 100 percent feature compatible with SQL 
Server but still maintains a few differences such as features that rely on Windows-related 
objects. SQL Server on Azure VMs provides 100 percent feature parity because it is the 
same as a SQL Server instance hosted on an on-premises virtual machine. However, 

https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#service-level-agreement-sla
https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#service-level-agreement-sla
https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview#service-level-agreement-sla


64  Chapter 2  ■  Relational Databases in Azure

because of potential SQL Server version differences, there could be feature differences 
when migrating from an old version of SQL Server to a newer version of SQL Server on 
Azure VM or one of the PaaS options. Deprecated features and features that are incom-
patible with the PaaS options can be discovered using the Data Migration Assistant 
(DMA). The DMA will be covered in further detail later in this chapter.

Most differences between SQL Server and Azure SQL Database are 
focused on server-related differences. Because Microsoft manages the 
backend server for an Azure SQL Database, features such as logins, 
server-level permissions, and EXECUTE AS LOGIN are not available. 
Instead, users can use database-scoped features such as database-level 
permissions and EXECUTE AS USER. More information on SQL Server 
and Azure SQL Database differences can be found at https://docs 
.microsoft.com/en-us/azure/azure-sql/database/transact-
sql-tsql-differences-sql-server.

The various Azure SQL offerings come with different levels of abstraction and 
management. Figure 2.4 illustrates the relationship between abstraction and administrative 
effort for each option.

As seen in the diagram, a SQL Server on Azure VM requires the most administrative 
effort because it provides full control over the SQL Server instance and the underlying 
OS. This is ideal for situations that require highly customized OS and/or database images 

SQL

SQL

SQL

Azure SQL
Database

Paas
Best for cloud

native applications

Azure
SQL MI

Paas
Best for lift-and-shift

migrations to the cloud

SQL Server
in a VM

Iaas

Administrative Effort

Le
ve

l o
f A

bs
tra

ct
io

n

Best for migrations and
applications requiring

OS-level access

F IGURE 2 .4   Azure SQL abstraction vs. administrative effort

https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://docs.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server


Relational Database Offerings in Azure  65

or scenarios requiring very granular control over the SQL Server engine. Azure SQL MI 
removes the OS layer from the user’s point of view but is more like an on-premises SQL 
Server instance than Azure SQL Database in that it provides a fully isolated environment 
encapsulated in a VNet and includes system databases. Users hosting their databases on 
Azure SQL MI still benefit from using a PaaS database in that patching, SQL Server version 
upgrades, backups, HA, DR, data encryption, auditing, and threat protection are all handled 
behind the scenes by Microsoft. Azure SQL Database completely abstracts the OS layer and 
database engine from users. Greenfield solutions that are developed using cloud native best 
practices typically use Azure SQL Database as their backend relational database.

Ultimately, choosing the right Azure SQL option comes down to the solution require-
ments and how much control is needed over the OS and database engine. The following sec-
tions explore each option in further detail.

SQL Server on Azure Virtual Machine
There are several reasons why an organization would want to migrate its applications to 
the cloud. Perhaps the most common reason is to offload the maintenance of hardware and 
networking equipment that it either owns or leases to a cloud provider. Expiring datacenter 
leases or aging hardware force many companies to rethink how they manage their IT infra-
structure. While many organizations will work to modernize their applications to be cloud 
native, most of them still use legacy applications that rely on features of SQL Server that are 
not available in the PaaS offerings of Azure SQL. There could also be specific situations that 
require fine-grained control over the database engine and the OS that it sits on. For these 
reasons, organizations may decide to migrate their existing SQL Server footprint to Azure 
SQL’s IaaS offering: SQL Server on Azure VMs.

As far as the database engine is concerned, a SQL Server on Azure VM is no different 
than a SQL Server instance hosted on a physical server in an on-premises environment. This 
allows developers and database administrators to acclimate quickly to working with SQL 
Server in Azure. Engineers deploying a SQL Server on Azure VM can choose one of three 
approaches for doing so:

■■ Choose one of the available SQL Server VM images from the Azure marketplace. 
These images allow you to easily deploy a specific version of SQL Server on the OS of 
your choosing.

■■ Install your own SQL Server license on a VM. Users with existing VMs in Azure 
can choose to install SQL Server with an existing license to save the need of deploy-
ing a new VM.

■■ Lift-and-shift existing VMs from an on-premises environment to Azure with Azure 
Migrate. Azure Migrate is a tool that can be used to assess and migrate on-premises 
infrastructure to Azure. VMs hosting SQL Server can be migrated to Azure using 
Azure Migrate without needing to deploy a new VM through the Azure Marketplace. 
More information on migrating VMs to Azure with Azure Migrate can be found at 
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-
overview#azure-migrate-server-migration-tool.

https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview#azure-migrate-server-migration-tool
https://docs.microsoft.com/en-us/azure/migrate/migrate-services-overview#azure-migrate-server-migration-tool


66  Chapter 2  ■  Relational Databases in Azure

Taking advantage of the ready-made images available in the Azure Marketplace greatly 
reduces the amount of time needed to provision a SQL Server VM in Azure. There are two 
licensing types available for SQL Server VMs: pay-as-you-go and bring your own license 
(BYOL). Pay-as-you-go simplifies licensing costs by billing you for the per-minute usage of 
the instance. Table 2.1 outlines the available pay-as-you-go SQL Server images in Azure.

TABLE 2 .1   Available Pay-As-You-Go SQL Server images

Version Operating System Edition

SQL Server 2019 Windows Server 2019 Enterprise, Standard, Web,  
Developer

SQL Server 2019 Ubuntu 18.04 Enterprise, Standard, Web,  
Developer

SQL Server 2019 Red Hat Enterprise Linux (RHEL) 8 Enterprise, Standard, Web,  
Developer

SQL Server 2019 SUSE Linux Enterprise Server 
(SLES) v12 SP5

Enterprise, Standard, Web,  
Developer

SQL Server 2017 Windows Server 2016 Enterprise, Standard, Web, 
Express, Developer

SQL Server 2017 Red Hat Enterprise Linux (RHEL) 7.4 Enterprise, Standard, Web, 
Express, Developer

SQL Server 2017 SUSE Linux Enterprise Server 
(SLES) v12 SP2

Enterprise, Standard, Web, 
Express, Developer

SQL Server 2017 Ubuntu 16.04 LTS Enterprise, Standard, Web, 
Express, Developer

SQL Server 2016 
SP2

Windows Server 2016 Enterprise, Standard, Web, 
Express, Developer

SQL Server 2014 
SP2

Windows Server 2012 R2 Enterprise, Standard, Web, 
Express

SQL Server 2012 
SP4

Windows Server 2012 R2 Enterprise, Standard, Web, 
Express

SQL Server 2008 
R2 SP4

Windows Server 2008 R2 Enterprise, Standard, Web, 
Express



Relational Database Offerings in Azure  67

Organizations who have already purchased SQL Server licenses can also apply those 
licenses to reduce the VM’s SQL Server cost component. This is known as bring your 
own license, or BYOL for short. Table 2.2 outlines the available BYOL SQL Server 
images in Azure.

You can deploy an older version of SQL Server that is not available in the 
Azure Marketplace with PowerShell. To view available images, run the 
following command in a PowerShell window:

Import-Module -Name Az
$Location = <Azure Region the SQL Server VM will be deployed to>
Get-AzVMImageOffer -Location $Location -Publisher` 
'MicrosoftSQLServer'

The available pay-as-you-go and BYOL SQL Server images are liable to change as new 
versions of SQL Server are introduced and older versions are deprecated. You can stay up 
to date on the available SQL Server VM images by referring to the tables in the following 
link: https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/
windows/sql-server-on-azure-vm-iaas-what-is-overview#get-started-with-
sql-server-vms.

VM size and storage configuration must also be considered when creating a SQL Server 
Azure VM. There are multiple VM sizes available that include different virtual CPU quan-
tities, memory sizes, and different disk sizes. Additional disks can be added to the VM 
depending on what is hosted in addition to SQL Server. There are also different categories of 
VM sizes that provide different baselines for performance, including these:

■■ Memory optimized—These provide stronger memory-to-vCPU ratios and are the 
Microsoft-recommended choice for SQL Server VMs on Azure.

TABLE 2 .2   Available bring your own license SQL Server images

Version Operating System Edition

SQL Server 2019 Windows Server 2019 Enterprise BYOL, Standard BYOL

SQL Server 2017 Windows Server 2016 Enterprise BYOL, Standard BYOL

SQL Server 2016 SP2 Windows Server 2016 Enterprise BYOL, Standard BYOL

SQL Server 2014 SP2 Windows Server 2012 R2 Enterprise BYOL, Standard BYOL

SQL Server 2012 SP4 Windows Server 2012 R2 Enterprise BYOL, Standard BYOL

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#get-started-with-sql-server-vms
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#get-started-with-sql-server-vms
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-what-is-overview#get-started-with-sql-server-vms


68  Chapter 2  ■  Relational Databases in Azure

■■ General purpose—These provide balanced memory-to-vCPU ratios and best serve 
smaller workloads such as development and test, web servers, and smaller data-
base servers.

■■ Storage optimized—These are designed with optimized disk throughput and input-
output (I/O) and are strong options for data analytics workloads.

These are general recommendations and should be used with application performance 
metrics to make the most appropriate VM choice for different workloads. Keep in mind that 
VMs use a pay-as-you-go cost model and can be stopped when not needed so that you are 
not charged during those times. However, most SQL Server VMs will need to stay online 
unless the SQL Server instance is a test instance. Organizations that will be using one or 
more SQL Server VMs for one or three years can purchase Azure Reserved Virtual Machine 
Instances. Once applied to a VM, Azure Reserved Virtual Machine Instances discount the 
cost of the virtual machine and compute costs.

It is important to determine the right VM size before purchasing a reser-
vation. The following link provides more information on Azure Reserved 
Virtual Machine Instances and determining the right VM size: https://
docs.microsoft.com/en-in/azure/virtual-machines/prepay-
reserved-vm-instances?toc=/azure/cost-management-billing/
reservations/toc.json#determine-the-right-vm-size-before-
you-buy.

Deploying a ready-made SQL Server VM image from the Azure Marketplace will include 
a default storage configuration for data, log, and tempdb files. While these configurations 
are optimal for general workloads, many workloads may benefit from different ones. There 
may also be a need to optimize for cost versus performance for non-production workloads. 
Regardless of workload type, these are some general checklist items that should be consid-
ered when configuring storage for a SQL Server VM on Azure:

■■ Place data, log, and tempdb files on separate drives.

■■ Place tempdb on the local SSD drive. This drive is ephemeral and will deallocate 
resources when the VM is stopped.

■■ Consider using standard HDD/SDD storage for development and test workloads.

■■ Use premium SSD disks for data and log files for production SQL Server workloads.

■■ Use P30 and/or P40 disks for data files to ensure caching support.

■■ Use P30 through P80 disks for log files.

Collecting storage performance metrics for workloads that will be migrated to Azure will 
help determine the most appropriate disk configuration. More information on SQL Server 
on Azure VM storage configurations can be found at https://docs.microsoft.com/
en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-
best-practices-storage.

https://docs.microsoft.com/en-in/azure/virtual-machines/prepay-reserved-vm-instances?toc=/azure/cost-management-billing/reservations/toc.json#determine-the-right-vm-size-before-you-buy
https://docs.microsoft.com/en-in/azure/virtual-machines/prepay-reserved-vm-instances?toc=/azure/cost-management-billing/reservations/toc.json#determine-the-right-vm-size-before-you-buy
https://docs.microsoft.com/en-in/azure/virtual-machines/prepay-reserved-vm-instances?toc=/azure/cost-management-billing/reservations/toc.json#determine-the-right-vm-size-before-you-buy
https://docs.microsoft.com/en-in/azure/virtual-machines/prepay-reserved-vm-instances?toc=/azure/cost-management-billing/reservations/toc.json#determine-the-right-vm-size-before-you-buy
https://docs.microsoft.com/en-in/azure/virtual-machines/prepay-reserved-vm-instances?toc=/azure/cost-management-billing/reservations/toc.json#determine-the-right-vm-size-before-you-buy
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage


Relational Database Offerings in Azure  69

Business Continuity

There are multiple solutions available in Azure to ensure that data hosted on SQL Server 
VMs is highly available in the event of several outage scenarios, ranging from planned 
downtime to datacenter-level disasters. These include solutions that provide database backup 
management at the database level and high availability and disaster recovery (HADR) capa-
bilities at both the VM and database levels.

Azure provides business continuity for disk storage by creating copies of the data stored 
on disk and storing them on Azure Blob storage. This type of redundancy can be broken 
down with the following options:

■■ Locally redundant storage (LRS) creates three copies of the data stored on disk and 
stores them in the same location in the same Azure region.

■■ Geo-redundant storage (GRS) stores three copies of the disk data in the same Azure 
region as the VM and then stores an additional three copies in a separate region.

While these services provide redundancy for data stored on Azure VMs, they should 
not be relied on as the only business continuity solution for SQL Server data. Database 
backups should also be taken to protect against application or user errors. Also, GRS does 
not support the data and log files to be stored on separate disks. Data from these two files 
is copied independently and asynchronously, creating a risk of losing data in the event of 
an outage.

Organizations can choose to set up their own database backup strategy through main-
tenance plans that are run as a SQL Server Agent job on a scheduled basis. Backups can be 
stored on local storage or in Azure Blob storage. Azure also allows organizations to offload 
this process by using a service called Automated Backup. This service regularly creates data-
base backups and stores them on Azure Blob storage without requiring a database adminis-
trator to set up the job on the database engine.

For true database-level HADR, organizations can add databases hosted on SQL Server 
VMs to a SQL Server Always On availability group. Availability groups, or AGs for short, 
replicate data from a set of user databases to one or more secondary SQL Server instances 
that are hosted on different VMs. The VMs, or server nodes, that host the primary and 
secondary SQL Server instances are clustered at the OS level. The cluster monitors the health 
of the server nodes and will promote a secondary server node to the primary if the existing 
primary experiences a failure.

Typical AG configurations include at least one secondary node in the same region as the 
primary to maintain HA and at least one secondary node in a different region for DR. Data-
base connections will move, or failover, to the HA node during planned downtime for the 
primary node. If the primary node and the secondary nodes in the same region as the pri-
mary are down at the same time, database connections will failover to the DR node in the 
other region.

AG configurations are not limited to Azure-only VMs. Hybrid scenarios are possible, 
allowing organizations to add on-premises SQL Server instances to the solution. This 



70  Chapter 2  ■  Relational Databases in Azure

requires VPN connectivity between the Azure network that SQL Server Azure VM is in and 
the on-premises network that the on-premises SQL Server is in. Network requirements for 
SQL Server VMs on Azure and hybrid scenarios will be discussed in the next section.

While these are common solutions used to create business continuity 
solutions for SQL Server on Azure VMs, there are more specific patterns 
designed to serve different scenarios. Refer to the following link to learn 
more about setting up HADR solutions for SQL Server on Azure VMs: 
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-
machines/windows/business-continuity-high-availability-
disaster-recovery-hadr-overview.

Network Isolation

A critical component of any IaaS offering is its ability to be completely self-isolated within 
a virtual network. Virtual networks in Azure, otherwise known as VNets, provide the back-
bone for isolating communication between different services. A VNet can include one or 
more subnets depending on the services that it is hosting. VNets can connect to other Azure 
VNets using a service called VNet peering as well as connect to on-premises networks 
through a point-to-site VPN, site-to-site VPN, or an Azure ExpressRoute. Hybrid connec-
tions are critical for organizations that have a presence in Azure and continue to maintain 
some of their applications in their on-premises environment.

VNets enable organizations to block specific IP address ranges and network protocols 
from being able to access resources connected to them. This includes blocking access to 
and from the public Internet. Databases hosted on SQL Server VMs on Azure are therefore 
restricted to only being able to communicate with applications that have been approved by 
an organization’s network security team.

Deploying through the Azure Portal

Deploying services in Azure can be done manually on the Azure Portal or automated using 
a scripting language (e.g., PowerShell or Bash) or an Infrastructure as Code template. SQL 
Server on Azure VMs are no different than any other service in this aspect, providing users 
multiple options for managing the deployment of their SQL Server databases on Azure. This 
section will cover the steps on how to manually deploy a SQL Server Azure VM through the 
Azure Portal. See the section “Deployment Scripting and Automation” later in this chapter 
to learn more about scripting and automating the deployment process for relational data-
bases in Azure.

Use the following steps to create a SQL Server on Azure VM using the Azure Portal:

1.	 Log into portal.azure.com and search for SQL virtual machines in the search bar at 
the top of the page. Click SQL virtual machines to go to the SQL virtual machines page 
in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your SQL Server 
on Azure VM.

https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/business-continuity-high-availability-disaster-recovery-hadr-overview
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/business-continuity-high-availability-disaster-recovery-hadr-overview
https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/business-continuity-high-availability-disaster-recovery-hadr-overview
http://portal.azure.com


Relational Database Offerings in Azure  71

3.	 Navigate to the SQL virtual machines option on the Select SQL deployment option 
page and select the VM image you would like to deploy. Figure 2.5 shows how this page 
is displayed and some of the options available after you click the Image drop-down 
arrow. Once you have selected an image, click the Create button to continue config-
uring the VM.

4.	 The Create a virtual machine page includes eight tabs with different configuration 
options to tailor the SQL Server VM to fit your needs. Let’s start by exploring the 
options available in the Basics tab. Along with the following list that describes each 
option, you can view a completed example of this tab in Figure 2.6.

a.	 Choose the subscription and resource group that will contain the SQL Server VM. 
You can create a new resource group on this page if have not already created one.

b.	 Enter a name for the VM.

c.	 Choose the Azure region you wish to deploy the image to.

d.	 Select whether you would like to enable high availability for the VM by using an 
Availability Zone or an Availability Set. Note that this is high availability for the 
VM and not for the SQL Server instance.

e.	 Review the VM image selected and change it if necessary.

f.	 Choose the VM size.

g.	 Set a username and password for the administrator account.

F IGURE 2 .5   Select a SQL virtual machine image.



72  Chapter 2  ■  Relational Databases in Azure

h.	 Set any inbound network ports that you wish to be accessible from the 
public Internet.

i.	 The last optional step on this page is whether you would like to apply an existing 
Windows Server license to the VM to reduce its cost.

F IGURE 2 .6   Create a SQL virtual machine: Basics tab.



Relational Database Offerings in Azure  73

5.	 The Disks tab focuses on the disk configuration for the OS. You can choose to change 
this from a Premium SSD to another disk type as well as change the encryption type 
used for the disk.

6.	 The Networking tab provides the following network configuration options for the VM. 
A completed example of this tab can be seen in Figure 2.7.

a.	 Choose the virtual network that the VM will be located in.

b.	 Choose a subnet within that virtual network for the VM.

c.	 Optionally choose a public IP address to be used for communication outside of the 
virtual network.

d.	 If needed, revise the open inbound ports selected in the Basics tab.

7.	 The Management tab allows you to customize features such as Azure Security Center 
monitoring, enabling automatic shutdown for the VM, and when OS patches should 
be applied.

8.	 The Advanced tab allows you to add any extensions or scripts to further customize the 
VM as it is being provisioned.

F IGURE 2 .7   Create a SQL virtual machine: Networking tab.



74  Chapter 2  ■  Relational Databases in Azure

9.	 The SQL Server settings tab provide the following configuration options for the SQL 
Server instance hosted on the VM. Figure 2.8 illustrates a completed view of this tab.

a.	 Choose the level of network isolation for SQL. The default for this option is lim-
iting communication to applications that are connected to the VNet the VM is in. 
However, there are options to further lock the SQL Server instance down so that 
only applications in the VM can communicate to it and to relax security by allow-
ing any application communicating over the public Internet to access it.

b.	 Choose whether you would like to enable SQL Authentication and Azure Key Vault 
Integration.

c.	 Review the default storage configuration for SQL Server’s data, log, and tempdb 
files. Edit the configuration if the default options do not meet your requirements.

d.	 Choose to apply an existing SQL Server license to reduce the cost of SQL.

e.	 Choose a time window for when patches can be applied to the OS and SQL.

f.	 Choose to enable automated backups if you would like to offload backup 
management to Azure.

g.	 The last optional setting is for R Services. This will enable users to perform machine 
learning activities in SQL Server using the R language.

10.	 The Tags tab allows you to place tags on the resources deployed with the SQL Server 
VM. Tags are used to categorize resources for cost management purposes.

11.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the VM, click 
the Create button to begin provisioning the SQL Server VM.

Azure SQL Managed Instance
Migrating SQL Server workloads to Azure can provide more benefits than simply offloading 
hardware management. Organizations can also take advantage of PaaS benefits that remove 
the overhead of managing a virtual machine, such as the OS and the SQL Server instance 
from users. However, applications that require instance-scoped features will still need to 
be able to interact with the SQL Server instance. This leaves database architects with two 
options: (1) rearchitect the solution to use cloud native technologies in place of instance-
scoped features, or( 2) migrate to a technology that supports these features. Prior to a few 
years back, this meant that organizations wishing to move to Azure needed to commit a lot 
of time to rebuilding the solution or move to SQL Server on a VM and manage the virtual 
machine and SQL Server–level maintenance such as upgrades. It is for these reasons that 
Microsoft introduced Azure SQL Managed Instance.

Azure SQL Managed Instance, or Azure SQL MI for short, is a PaaS database offering 
on Azure. It abstracts the OS but includes a SQL Server instance so that users can continue 
using their existing SQL Server processes without having to manage hardware or virtual 
machines. This makes it the ideal solution for customers looking to migrate many databases 
to Azure with as little effort as possible. Azure SQL MI also includes many system data-
bases such as model, msdb, and tempdb. It can be used to host a distribution database for 
transactional replication, SSRS databases, and SSIS data catalog databases.



Relational Database Offerings in Azure  75

While Azure SQL MI can host SSISDB and SSRS catalog databases, it 
cannot host SSIS packages or SSRS. If you wish to host these services 
on Azure, they will need to be hosted on a virtual machine. Another 
alternative is to use a more modern approach by migrating SSIS pack-
ages to Azure Data Factory and hosting SSRS paginated reports in  
Power BI.

F IGURE 2 .8   Create a SQL virtual machine: Settings tab.



76  Chapter 2  ■  Relational Databases in Azure

The Azure SQL MI database engine uses the latest version of SQL Server Enterprise 
Edition, with updates and patches applied by Microsoft as they are made available. Azure 
SQL MI is nearly 100 percent compatible with on-premises SQL Server and offers support 
for instance-scoped features such as the SQL Server Agent, common language runtime 
(CLR), linked servers, Database Mail, and distributed transactions. It also includes a native 
VNet implementation to provide network isolation for the databases it hosts.

Service Tiers

There are two service tiers available for Azure SQL MI:

■■ General Purpose is designed for applications with typical performance requirements.

■■ Business Critical is designed for applications with low latency and strict HA require-
ments. This tier uses a SQL Server Always On availability group for HA and enables one 
of the secondary nodes to be used for read-only workloads.

Table 2.3 outlines some of the key differences between the two tiers. The descriptions 
listed are for the Gen5 hardware version of Azure SQL MI.

More information on the different Azure SQL MI service categories can be found at 
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/
resource-limits#service-tier-characteristics. Each of these service tiers falls 

TABLE 2 .3   Azure SQL MI service tier characteristics

Feature General Purpose Business Critical

Number of vCores 4, 8, 16, 24, 32, 40, 64, 80 4, 8, 16, 24, 32, 40, 64, 80

Max Memory 20.4 GB—408 GB (5.1 GB/
vCore)

20.4 GB—408 GB (5.1 GB/
vCore)

Storage Type High Performance Azure Blob 
storage

Local SSD storage

Max Instance Storage 2 TB for 4 vCores

8 TB for other sizes

1 TB for 4, 8, 16 vCores

2 TB for 24 vCores

4 TB for 32, 40, 64, 80 
vCores

Max Number of Databases  
per Instance

100 user databases 100 user databases

Data/Log IOPS Up to 30–40K IOPS per instance 16K–320K (4000 IOPS/
vCore)

Storage I/O Latency 5–10 ms 1–2 ms

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/resource-limits#service-tier-characteristics


Relational Database Offerings in Azure  77

under the vCore-based purchasing model and can be scaled up or down in the Azure Portal 
or through an automation script as workload requirements change.

The cost for Azure SQL MI can be reduced using a couple of different methods. First, 
organizations with existing SQL Server licenses can apply them to Azure SQL MI to reduce 
its cost. If an organization does not have or decides not to use existing licenses, they can 
choose to purchase reserved capacity. Like Azure Reserved Virtual Machine Instances for 
SQL Server on Azure VMs, reserved capacity allows organizations to commit to Azure 
SQL MI for one or three years. To purchase reserved capacity, you will need to specify the 
Azure region the Azure SQL MI will be deployed to, the service tier, and the length of the 
commitment.

Network Isolation

An Azure SQL MI is required to be placed inside a VNet upon creation. On top of this 
requirement, the subnet that the Azure SQL MI is deployed to must be dedicated to host-
ing one or more Azure SQL MIs. This requirement restricts access to databases hosted on 
the Azure SQL MI to only applications that can communicate with that VNet. On-premises 
networks that host applications connecting to Azure SQL MI can use a VPN or Azure 
ExpressRoute to communicate with the VNet in Azure.

Deploying an Azure SQL MI to a subnet for the first time creates more than just the data-
base engine. Along with the database engine, the deployment will create the following:

■■ A virtual cluster to host each Azure SQL MI that is deployed to that subnet. An Azure 
SQL MI is made up of a set of service components that are hosted on a dedicated set of 
virtual machines that are abstracted from the user and run inside the subnet. Together, 
these virtual machines form a virtual cluster.

■■ A network security group (NSG) to control access to the SQL Managed Instance data 
endpoint by filtering traffic on port 1433 and ports 11000–11999 when SQL Managed 
Instance is configured for redirect connections. The NSG will be associated with the sub-
net once it is provisioned.

■■ A User Defined Route (UDR) table to route traffic that has on-premises private IP 
ranges as a destination through the virtual network gateway or virtual network appli-
ance (NVA). The UDR table will be associated with the subnet once it is provisioned.

The subnet will also be delegated to the Microsoft.Sql/managedInstances resource pro-
vider. See the section “Azure Resource Manager Templates” later in this chapter for more 
information on resource providers.

While knowing specific network requirement details for Azure SQL MI 
is not required for the DP-900 exam, it will be necessary to work with 
them. You can learn more about Azure SQL MI’s network requirements at 
https://docs.microsoft.com/en-us/azure/azure-sql/managed-
instance/connectivity-architecture-overview.

https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connectivity-architecture-overview
https://docs.microsoft.com/en-us/azure/azure-sql/managed-instance/connectivity-architecture-overview


78  Chapter 2  ■  Relational Databases in Azure

Deploying through the Azure Portal

Use the following steps to create an Azure SQL MI through the Azure Portal:

1.	 Log into portal.azure.com and search for SQL managed instances in the search 
bar at the top of the page. Click SQL managed instances to go to the SQL managed 
instances page in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure SQL MI.

3.	 The Create Azure SQL Database Managed Instance page includes five tabs with dif-
ferent configuration options to tailor the Azure SQL MI to fit your needs. Let’s start 
by exploring the options available in the Basics tab. Along with the following list that 
describes each option, you can view a completed example of this tab in Figure 2.9.

a.	 Choose the subscription and resource group that will contain the Azure SQL MI 
and the databases deployed to the instance. You can create a new resource group on 
this page if you have not already created one.

b.	 Enter a name for the Azure SQL MI.

c.	 Choose the Azure region you wish to deploy the instance to.

d.	 Choose a tier for the instance (i.e., General Purpose or Business Critical), 
the number of vCores, the storage amount, and the type of redundancy for 
backup storage.

e.	 Set a username and password for the administrator account.

F IGURE 2 .9   Create Azure SQL Database Managed Instance: Basics tab.

http://portal.azure.com


Relational Database Offerings in Azure  79

4.	 The Networking tab provides the following network configuration options for the 
Azure SQL MI. A completed example of this tab can be seen in Figure 2.10.

a.	 Choose the VNet and dedicated subnet that will host the Azure SQL MI.

b.	 The next important component will be deciding whether you want to enable a 
public endpoint for the Azure SQL MI. Public endpoints are disabled by default 
to limit connectivity to applications that can communicate with the VNet that the 
Azure SQL MI is in.

c.	 Choose the minimum TLS version that will be used to encrypt data in-transit for 
inbound connections. The default TLS version is 1.2 and should be left as is unless 
there are specific requirements for a lower version.

5.	 The Additional Settings tab provides options to change the collation, time zone, and 
maintenance window for the Azure SQL MI’s underlying SQL Server database engine. It 
also includes an option to enable the instance as a secondary in an Azure SQL failover 
group for DR purposes.

6.	 The Tags tab allows you to place a tag on the Azure SQL MI for cost management.

7.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the instance, 
click the Create button to begin provisioning the Azure SQL MI.

F IGURE 2 .10   Create Azure SQL Database Managed Instance: Networking tab.



80  Chapter 2  ■  Relational Databases in Azure

Azure SQL Database
Modern applications that are built from the ground up with cloud native best practices rely 
on database platforms that are flexible and minimize the amount of administrative effort 
needed to manage the database. Administrators must be able to easily scale performance 
resources up or down to meet dynamic demand requirements at the most cost-optimal price 
point. Modern applications are typically designed not to need instance-scoped features that 
are available in a platform like SQL Server as these features can be implemented using other 
cloud native offerings. For example, Azure Data Factory, Azure Logic Apps, or Azure Auto-
mation can be used to automate when stored procedures or other tasks in the database are 
run, eliminating the need for SQL Server Agent jobs to perform custom maintenance tasks 
that are not natively handled by Microsoft.

Azure SQL Database is a fully managed PaaS database engine that is designed to serve 
cloud native applications. It abstracts both the OS and the SQL Server instance so that users 
can fully focus on application development. Management operations such as upgrades, 
patches, backups, HA, and monitoring are also handled behind the scenes without requiring 
any effort from the user. Azure SQL Database comes with a 99.99 percent availability guar-
antee, regardless of the deployment option or service tier. Just like Azure SQL MI, Azure 
SQL Database uses the latest version of SQL Server Enterprise Edition. In fact, the newest 
features of SQL Server are first released to Azure SQL Database before they are released to 
SQL Server.

Even though Azure SQL Database abstracts the physical SQL Server instance from the 
user, it still exposes a logical server. Unlike a physical server, the logical server does not 
expose any instance-scoped features. It instead serves as a parent resource for one or more 
Azure SQL databases, and maintains firewall, auditing, and threat detection rules for the 
databases it is associated with. The logical server also provides a connection endpoint for 
each Azure SQL Database associated with it for applications to use to connect to them.

Azure SQL Database provides two deployment options that allow organizations to opti-
mize database performance and cost:

■■ A single database is a fully managed, isolated database. This option leverages all the 
resources (e.g., CPU and memory) allocated to it and is used when a modern application 
needs a single reliable database.

■■ An elastic pool is a collection of single databases with a shared set of resources, such 
as CPU or memory. Elastic pools are useful in scenarios where some databases are used 
more than others during different time periods. This will reduce the cost of these data-
bases since they will be sharing the same pool of resources.

These options can be broken down further by the following purchasing models that are 
available for Azure SQL Database:

■■ The DTU-based purchasing model offers a fixed blend of CPU, memory, and IOPS. 
Each blended compute package is known as database transaction units (DTUs). The 
DTU-based purchasing model comes with a fixed amount of storage that varies for each 
service tier.



Relational Database Offerings in Azure  81

■■ The vCore-based purchasing model lets organizations choose how many virtual cores 
(vCores) they would like allocated. Service tiers using the vCore-based purchasing model 
allocate a fixed amount of memory per vCore that varies based on the hardware gener-
ation and compute option used. This purchasing model allows organizations to apply 
their existing SQL Server licenses to reduce the overall cost of the database. Reserved 
capacity is also exclusively available for the vCore-based purchasing model, allowing 
organizations to commit to Azure SQL Database for one or three years at a discounted 
rate. The vCore-based purchasing model provides two options for compute:

■■ Provisioned compute allows organizations to deploy a specific service tier with a set 
amount of compute resources. Provisioned compute can be dynamically scaled manu-
ally or through an automation script.

■■ Serverless compute allows organizations to specify a minimum and maximum vCore 
limit for a database. Databases configured to use serverless compute will automat-
ically scale based on workload demand. It will also automatically pause databases 
during inactive periods and restart them when activity resumes to cut back on com-
pute costs. This option is only available for single databases.

Deciding on which purchasing model to choose comes down to how much control over 
compute resources you would like to have. The DTU-based purchasing model offers a fixed 
combination of resources that allow organizations to start developing very quickly. The 
vCore-based purchasing model allows organizations to choose the amount of compute 
resources, or a range of compute resources in the case of serverless. This model also includes 
a more extensive selection of storage sizes as well as more cost-saving options with reserved 
capacity or existing licenses.

Service Tiers

Azure SQL Database service tiers are different for each purchasing model. The DTU-based 
purchasing model offers Basic, Standard, and Premium tiers. Table 2.4 lists some of the 
common characteristics of these tiers.

TABLE 2 .4   DTU-based purchasing model service tier characteristics

Characteristic Basic Standard Premium

DTUs 5 S0: 10

S1: 20

S2: 50

S3: 100

S4: 200

S6: 400

S7: 800

S9: 1600

S12: 3000

P1: 125

P2: 250

P4: 500

P6: 1000

P11: 1750

P15: 4000



82  Chapter 2  ■  Relational Databases in Azure

The vCore-based purchasing model offers the following three service tiers:

■■ General Purpose is used for most business workloads. This tier offers balanced compute 
and storage options.

■■ Business Critical is used for business applications that require high I/O performance. It 
is also the best option for applications that require high resiliency to outages by lever-
aging a SQL Server Always On availability group for HA.

■■ Hyperscale is used for very large OLTP databases (>4 TB) and can automatically scale 
storage and compute. Hyperscale databases use local SSDs for local buffer-pool cache 
and data storage. Long-term data storage is done with remote storage.

Table 2.5 lists the common characteristics for the vCore-based purchasing model ser-
vice tiers:

Characteristic Basic Standard Premium

Included Storage 2 GB 250 GB P1–P6: 500 GB

P11 and above: 
4 TB

Maximum Storage 2 GB S0–S2: 250 GB

S3 and above: 1 TB

P1–P6: 1 TB

P11 and above: 
4 TB

Maximum backup  
retention

7 days 35 days 35 days

CPU Low Low, Medium, High Medium, High

IOPS 1–4 IOPS per DTU 1–4 IOPS per DTU >25 IOPS per DTU

IO Latency 5 ms (read), 10 ms 
(write)

5 ms (read), 10 ms 
(write)

2 ms (read/write)

Columnstore Indexes N/A S3 and above Supported

In-Memory OLTP N/A N/A Supported

TABLE 2 .4   DTU-based purchasing model service tier characteristics  (continued)



Relational Database Offerings in Azure  83

Resource limits for the vCore-based purchasing model such as the 
number of vCores, amount of memory, IO latency, and maximum IOPS 
depend on the type of hardware chosen. See https://docs 
.microsoft.com/en-us/azure/azure-sql/database/ 
resource-limits-vcore-single-databases for the resource limits 
related to hardware available in the vCore-based purchasing model.

Network Isolation

Unlike SQL Server on a VM and Azure SQL MI, a logical server for an Azure SQL Data-
base does not come with a built-in private endpoint. This means that an Azure SQL Data-
base is not isolated within a VNet by default. Network isolation for Azure SQL Database 
can instead be achieved by limiting access to the logical server’s public endpoint through the 
server’s firewall, restricting access to only services in a specific VNet or subnet, or explicitly 
adding a private endpoint that is associated with a subnet in a VNet.

Public endpoint access can be limited using the following settings:

■■ Allow Azure Services allows all resources hosted on Azure, such as an Azure VM or 
Azure Data Factory, to communicate with databases associated with the logical server. 
This setting is turned off by default, as turning it on typically provides database access 
to more resources than what is needed.

■■ IP firewall rules open port 1433 (the default port SQL Server listens on) to a specific IP 
address or a range of IP addresses. Firewall rules can be set at the server level to allow 
access to all databases associated with a logical server or at the database level to only 
allow access to a specific database.

Server-level IP firewall rules can be created using the Azure Portal, Azure 
PowerShell, the Azure CLI, the Azure REST API, and T-SQL. Database-
level firewall rules can only be created and managed with T-SQL.

TABLE 2 .5   vCore-based purchasing model service tier characteristics

Characteristic General Purpose Business Critical Hyperscale

Storage Uses remote storage.

Provisioned Compute: 
5 GB–4 TB

Serverless Compute: 
5 GB–4 TB

Uses local SSD storage

Provisioned Compute: 
5 GB–4 TB

Supports up to 100 TB

Availability 1 replica, no read-scale 
replicas

3 replicas, 1 read-scale 
replica

1 read-write replica, 0–4 
read-scale replicas

In-Memory Not Supported Supported Partial Support

https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases
https://docs.microsoft.com/en-us/azure/azure-sql/database/resource-limits-vcore-single-databases


84  Chapter 2  ■  Relational Databases in Azure

Private access to the logical server can also be enabled so that database connectivity 
is restricted to specific VNets. This type of access can be enabled using one of the follow-
ing settings:

■■ Virtual network firewall rules restrict access to databases associated with a logical server 
to traffic using the private IP range of a VNet. Application traffic coming from a specific 
subnet in a VNet can be switched from using public IP addresses to private IP addresses 
by adding the Microsoft.Sql service endpoint to the subnet. The subnet can then be 
added as a virtual network rule in the logical server to allow traffic from that subnet to 
connect to databases associated with the logical server.

■■ Private Link is a service in Azure that allows you to add a private endpoint to a logical 
server. Private endpoints are private IP addresses within a specific subnet in a VNet. 
Once a private endpoint is attached, connectivity will be limited to other applications in 
the VNet or applications that can connect to the VNet through VNet peering, VPN, or 
Azure ExpressRoute.

Relational databases covered later in this chapter use the same methods 
for network isolation as Azure SQL Database. IP or virtual network fire-
wall rules can be set at the logical server level or private endpoints can 
be attached to the logical server to provide network isolation for all data-
bases associated to that logical server. However, unlike with Azure SQL 
Database, these rules can only be applied at the server level and not at 
the individual database level. These services include Azure Synapse Ana-
lytics dedicated SQL pools, Azure Database for MySQL, Azure Database 
for PostgreSQL, and Azure Database for MariaDB.

Deploying Through the Azure Portal

Use the following steps to create an Azure SQL Database through the Azure Portal:

1.	 Log into portal.azure.com and search for SQL databases in the search bar at the top 
of the page. Click SQL databases to go to the SQL databases page in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure SQL Database.

3.	 The Create SQL Database page includes six tabs with different configuration options 
to tailor the Azure SQL Database to fit your needs. Let’s start by exploring the options 
available in the Basics tab. Along with the following list that describes each option, you 
can view a completed example of this tab in Figure 2.12.

a.	 Choose the subscription and resource group that will contain the Azure SQL Data-
base. You can create a new resource group on this page if you have not already 
created one.

b.	 Enter a name for the Azure SQL Database.

c.	 Choose the logical server you wish to deploy the database to. You can create a new 
logical server on this page if there is not one already available. The logical server 
chosen will dictate which region the database will be deployed to. Note that cre-
ating a new logical server will also require you to set a username and password for 
the administrator account.

http://portal.azure.com


Relational Database Offerings in Azure  85

d.	 Choose whether the database will be a part of an elastic pool.

e.	 Click Configure database to choose the purchasing model and service tier. If you 
choose one of the vCore-based purchasing model service tiers, you will be given 
the option to apply existing SQL Server licenses, choose the number of vCores, 
and set the maximum amount of storage allocated for data. Choosing a DTU-
based purchasing model service tier will give you options to change the number 
of DTUs allocated to the database and the maximum amount of storage allocated 
for data. Figure 2.11 is an example of completed configuration for a General 
Purpose database. As you can see, the database configuration comes with a monthly 
cost estimate.

f.	 Choose the redundancy tier for database backups.

4.	 The Networking tab allows you to configure network access and connectivity for your 
logical server if you are creating a new one. If you are deploying the database to an 
existing logical server, then most of the options will be grayed out as it will be taking on 
the existing state of the server. A completed example of configuring a new logical server 
can be seen in Figure 2.13.

F IGURE 2 .11   Configuring an Azure SQL Database



86  Chapter 2  ■  Relational Databases in Azure

a.	 There are three options available for network connectivity. The first option, No 
Access, allows you to continue configuring your database without needing to con-
figure any connectivity until after it is provisioned. Public Endpoint will display a 
new set of options specific to the logical server’s firewall. These will allow you to 
allow or deny Azure services and the client IP address you are deploying the logical 
server from access to the databases on the server. The final option, Private End-
point, will allow you to associate a private IP address from a VNet to the logical 
server. This will isolate the databases within a VNet, allowing connectivity only to 
applications that can communicate with the VNet.

b.	 Choose how client applications will communicate with the logical server.

c.	 Choose the minimum TLS version that will be used to encrypt data in-transit for 
inbound connections. The default TLS version is 1.2 and should be left as is unless 
there are specific requirements for a lower version.

F IGURE 2 .12   Create Azure SQL Database: Basics tab.



Relational Database Offerings in Azure  87

5.	 The Security tab allows you to choose if you would like to use Azure Defender for SQL 
to provide advanced threat protection for your data.

6.	 The Additional Settings tab allows you to start your database as a blank database, 
from a backup, or from a sample provided by Microsoft. You can also choose if you 
would like to change the default collation for the database and the default mainte-
nance window.

7.	 The Tags tab allows you to place a tag on the Azure SQL Database for cost 
management.

8.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the instance, 
click the Create button to begin provisioning the Azure SQL Database.

F IGURE 2 .13   Create Azure SQL Database: Networking tab.



88  Chapter 2  ■  Relational Databases in Azure

Keep a note of the name of the logical server. This will be important later 
in this chapter when we walk through adding an Azure Active Directory 
user or group as an administrator account.

Scaling PaaS Azure SQL in the Azure Portal
Scaling Azure SQL MI or Azure SQL Database resources up or down depending on work-
load demand, also known as vertical scale, is very easy in the Azure Portal. The need to ver-
tically scale can result from performance degradation due to a lack of compute resources 
or overallocated compute resources that result in unnecessary expenses. The speed at which 
users can vertically scale compute and storage resources through the Azure Portal allows 
organizations to react very quickly to a change in workload demand. Since this process is 
the same for Azure SQL MI and Azure SQL Database, this section will detail how to scale 
an Azure SQL MI as an example. The only difference between the two is that you will need 
to go to the SQL databases page to scale your Azure SQL Database instead of the SQL 
managed instances page.

To scale an Azure SQL MI, go to the SQL managed instances page in the Azure Portal. 
Click your recently created Azure SQL MI and click the Compute + storage option under 
Settings. This page will allow you to change the service tier, number of vCores, and amount 
of storage allocated to the instance. The page will also update the cost summary for the in-
stance as you change different configuration settings. Figure 2.14 illustrates an example of 
this process.

F IGURE 2 .14   Scaling an Azure SQL MI



Relational Database Offerings in Azure  89

Business Continuity for PaaS Azure SQL
Azure manages backups for Azure SQL Database and Azure SQL MI databases by cre-
ating a full backup every week, differential backups every 12 to 24 hours, and transaction 
log backups every 5 to 10 minutes. These backups are stored in geo-redundant Azure Blob 
storage and are replicated to a separate Azure region. Backups are kept for 7 to 35 days, 
depending on the service tier and the retention settings set by an administrator. Long-
term backup retention (LTR) can also be enabled to retain full database backups for up 
to 10 years.

Database backups can be restored to Azure SQL Database or Azure SQL MI by 
performing a point-in-time restore (PITR). PITR can restore a backup from an existing data-
base or a deleted database. Database backups taken from Azure SQL MI can be restored to 
the same Azure SQL MI with a different database name or a different Azure SQL MI. This 
can be done through the Azure Portal, the Azure command-line interface (CLI), or Azure 
PowerShell.

High availability for Azure SQL Database and Azure SQL MI differs depending on the 
service tier being used. The following sections outline the high availability architectures used 
by each service tier of Azure SQL Database and Azure SQL MI.

Basic, Standard, and General Purpose

High availability for the Basic, Standard, and General Purpose tiers of Azure SQL Database 
and the General Purpose tier of Azure SQL MI is accomplished through the standard avail-
ability model. This includes the following two layers:

■■ A stateless compute layer that runs the sqlservr.exe process and contains only 
ephemeral data such as data stored in tempdb. This is operated by Azure Service Fabric, 
which will move sqlservr.exe to another stateless compute node in the event of a 
database or OS upgrade or a failure. This process guarantees 99.99 percent availability 
but could result in performance degradation since sqlservr.exe will start with a cold 
cache after a failover.

■■ A stateful data layer with the data files stored in Azure Blob storage which has 
built-in HA.

Premium, Business Critical, and Hyperscale

High availability for the Premium and Business Critical tiers of Azure SQL Database and 
the Business Critical tier of Azure SQL MI is accomplished through the Premium availability 
model. This model uses a SQL Server Always On AG for HA and deploys an additional three 
or four nodes behind the scenes to act as secondaries in the AG. The AG synchronously rep-
licates compute and storage from the primary node to each of the secondaries. This ensures 
that the secondaries are in sync with the primary node before fully committing each trans-
action. Azure Service Fabric will automatically initiate a failover to one of the secondaries 
if the primary node experiences any downtime. This will ensure that anyone using the data-
base will not notice the failover. An added benefit of this configuration is that one of the 
secondaries can be used for read-only workloads. This increases performance by eliminating 
resource contention between read-only and write operations.



90  Chapter 2  ■  Relational Databases in Azure

Disaster recovery for Azure SQL database is achieved by zone redun-
dancy. This process replicates the HA model used to three different avail-
ability zones in the same region. Disaster recovery for Azure SQL MI can 
be achieved by adding the Azure SQL MI to a failover group with another 
Azure SQL MI that is hosted in a different region. More information 
on failover groups can be found at https://docs.microsoft.com/
en-us/azure/azure-sql/database/auto-failover-group-
overview?tabs=azure-powershell#best-practices-for-sql-
managed-instance.

Azure Synapse Analytics Dedicated SQL Pools
Azure Synapse Analytics dedicated SQL pools is a PaaS relational database engine that 
is optimized for data warehouse workloads. Dedicated SQL pools use a scale-out MPP 
architecture to process very large amounts of data. This means that data is sharded into mul-
tiple distributions and processed across one or more compute nodes. To do this, dedicated 
SQL pools separate compute and storage by using a SQL engine to perform computations 
and Azure Storage to store the data. Even though data is stored in Azure Blob storage, dedi-
cated SQL pools serve data to users in a relational format as tables or views.

Dedicated SQL pools shard data into 60 distributions across one or more compute nodes. 
There are three different distribution patterns to consider when creating tables or material-
ized views. The most optimal choice is going to depend on the size and nature of the table or 
materialized view. They include the following distribution patterns:

■■ Hash distribution uses a hash function to deterministically assign each row to a distribu-
tion. In the table or view definition, one of the columns is designated as the distribution 
column. The most optimal distribution columns have a high number of distinct values 
and an even amount of data skew. Hash distribution is the best option for large fact 
and dimension tables as it provides the best performance for joins and aggregations on 
large tables.

■■ Round-robin distribution is the simplest distribution pattern as it evenly shards data 
randomly across distributions. Data is loaded quickly to a table or view using round-
robin distribution but it can cause performance issues as data is not organized in 
the most optimal manner across each distribution. Typical use cases for round-robin 
distribution include staging tables or using it if there are no columns with highly dis-
tinct values.

■■ Replicated tables or materialized views cache a full copy of the table or materialized 
view on the first distribution on each compute node. This provides the fastest query 
performance as data does not need to shuffle from one distribution to another when 
aggregated or joined. Because extra storage is required, replicated tables and material-
ized views are recommended for small tables or tables that contain static values.

https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell#best-practices-for-sql-managed-instance
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell#best-practices-for-sql-managed-instance
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell#best-practices-for-sql-managed-instance
https://docs.microsoft.com/en-us/azure/azure-sql/database/auto-failover-group-overview?tabs=azure-powershell#best-practices-for-sql-managed-instance


Relational Database Offerings in Azure  91

Distribution design should be carefully considered since data distribution results in data 
being physically stored in different locations. For example, round-robin distribution tables 
or poorly chosen distribution columns on hash distributed tables could result in a lot of data 
shuffling when the data is queried. The more that data needs to be shuffled, the more time 
the query will take to complete.

Just as with Azure SQL Database, it is easy to scale a dedicated SQL pool up or down 
depending on workload demands through the Azure Portal, PowerShell, or T-SQL. Service 
level objectives (SLOs) represent the scalability setting of a dedicated SQL pool and deter-
mine the cost and performance level as well as the number of compute nodes allocated. 
These are measured by compute Data Warehouse Units (cDWUs) which are bundled com-
pute units of CPU, memory, and I/O. Table 2.6 lists the available dedicated SQL pool SLOs.

TABLE 2 .6   Dedicated SQL pool service level objectives

Performance Level Compute Nodes Distributions per Compute Node Memory (GB)

DW100c 1 60 60

DW200c 1 60 120

DW300c 1 60 180

DW400c 1 60 240

DW500c 1 60 300

DW1000c 2 30 600

DW1500c 3 20 900

DW2000c 4 15 1,200

DW2500c 5 12 1,500

DW3000c 6 10 1,800

DW5000c 10 6 3,000

DW6000c 12 5 3,600

DW7500c 15 4 4,500

DW10000c 20 3 6,000

DW15000c 30 2 9,000

DW30000c 60 1 18,000



92  Chapter 2  ■  Relational Databases in Azure

Dedicated SQL pools are one part of the broader Azure Synapse Ana-
lytics suite of analytical components and will be discussed further in 
Chapter 5, “Modern Data Warehouses in Azure.” This includes how to 
deploy a dedicated SQL pool through the Azure Portal in an Azure Syn-
apse Analytics workspace.

Open-Source Databases in Azure
While SQL Server is a very popular relational database offering, there are several organiza-
tions that rely on open-source database platforms to store their relational data. Open-source 
database platforms can be deployed quickly at very little cost, enabling organizations to 
stand up a storage platform for their applications with little overhead. However, on-premises 
open-source database deployments still require organizations to manage hardware, OS, and 
database engine maintenance. For this reason, Azure offers three PaaS options for hosting 
open-source databases. These include Azure Database for MySQL, Azure Database for  
MariaDB, and Azure Database for PostgreSQL. Just like Azure SQL Database, these offer-
ings come with native high availability, automatic patching, automatic backups, and 
automatic threat protection.

Each of these offerings use the vCore-based purchasing model and includes the following 
three service tiers:

■■ Basic—Workloads that require light compute and I/O performance, such as 
development and test environments

■■ General Purpose—Most business workloads that require a balance of compute and 
memory, with scalable I/O performance

■■ Memory Optimized—Workloads that require high performance and in-memory 
capabilities

Azure Database for MySQL and Azure Database for PostgreSQL include two deployment 
options: Single Server and Flexible Server.

■■ Single Server is a fully managed database service that manages the database engine, 
handling database and OS patches, automatic backup schedules, and high availability. 
This option is best suited for modern applications that use cloud native design practices.

■■ Flexible Server gives users more granular control over the management of the data-
base engine. It allows users to configure high availability within one availability zone 
or across multiple availability zones. Users can also stop and start the server and set a 
burstable compute tier for workloads that do not always need a fixed compute capacity.

The following sections will only cover Single Server as Flexible Server is still in preview 
and is not a focus of the DP-900 exam.

Single Server is the only deployment option available for Azure Database 
for MariaDB as of the writing of this book.



Relational Database Offerings in Azure  93

Discount pricing for each of these options is available by prepaying for compute 
resources. Reserved capacity allows users to purchase a one-year term for Azure Database 
for PostgreSQL and one- or three-year terms for Azure Database for MySQL and Azure 
Database for MariaDB. As with Azure SQL, the number of vCores will need to be known 
beforehand as these are the resources that are purchased.

Azure Database for MySQL
MySQL is an open-source relational database engine that is very similar to SQL Server. Users 
can issue queries to a MySQL database using SQL, with some nuanced syntax differences 
versus how Microsoft SQL Server implements SQL.

Azure Database for MySQL is a PaaS relational database offering based on the MySQL 
Community Edition. Supported versions of the MySQL database engine include 5.6, 5.7, and 
8.0. Azure Database for MySQL includes the resource configuration options for each pricing 
tier shown in Table 2.7.

Deploying Through the Azure Portal

Azure Database for MySQL through the Azure Portal is very similar to how you would 
deploy an Azure SQL Database.

1.	 Log into portal.azure.com and search for Azure Database for MySQL servers in the 
search bar at the top of the page. Click Azure Database for MySQL servers to go to the 
Azure Database for MySQL servers page in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure Database for 
MySQL server.

3.	 The next page will allow you to select which deployment option you would like to use. 
This example will demonstrate how to configure a Single Server deployment. Click Cre-
ate under the Single server option to continue.

4.	 The Create MySQL server page includes six tabs with different configuration options to 
tailor the Azure Database for MySQL server to fit your needs. Let’s start by exploring 
the options available in the Basics tab. Along with the following list that describes each 
option, you can view a completed example of this tab in Figure 2.15.

TABLE 2 .7   Azure Database for MySQL service tier resource options

Feature Basic General Purpose Memory Optimized

Number of vCores 1, 2 2, 4, 8, 16, 32, 64 2, 4, 16, 32

Amount of Memory per vCore 2 GB 5 GB 10 GB

Storage Size 5 GB to 1 TB 5 GB to 16 TB 5 GB to 16 TB

http://portal.azure.com


94  Chapter 2  ■  Relational Databases in Azure

a.	 Choose the subscription and resource group that will contain the Azure Database 
for MySQL server. You can create a new resource group on this page if have not 
already created one.

b.	 Enter a server name.

c.	 Choose to start without any databases associated with the server or to restore a 
database backup to the server as it is being deployed.

d.	 Choose the Azure region that the server will be located in.

e.	 Choose the MySQL database engine version.

f.	 Choose the service tier, number of vCores, storage amount, backup retention period, 
and backup redundancy. Note that storage cannot be scaled down once the server 
is deployed.

g.	 Note that creating a new logical server will also require you to set a username and 
password for the administrator account.

5.	 The Additional Settings tab allows you to enable double encryption if it is required. This 
setting will add an additional infrastructure encryption layer on top of the database and 
database backup encryption layer.

F IGURE 2 .15   Create MySQL server: Basics tab.



Relational Database Offerings in Azure  95

6.	 The Tags tab allows you to place a tag on the Azure Database for MySQL server for 
cost management.

7.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the instance, 
click the Create button to begin provisioning the Azure Database for MySQL server.

Azure Database for MariaDB

MariaDB is another open-source relational database platform that is a fork of MySQL. 
In fact, the founders of MariaDB were the original founders of MySQL. There are some 
performance enhancements made to the query optimizer and the storage engine, but most of 
the core functionality is the same as MySQL. More information on MariaDB can be found 
at https://mariadb.org.

Azure Database for MySQL is a PaaS relational database offering based on the  
MariaDB Community Edition. Supported versions of the MariaDB database engine include 
10.2 and 10.3.

Azure Database for MariaDB includes the same service tier resource configurations as 
Azure Database for MySQL. It also includes most of the same configuration options as 
Azure Database for MySQL when deploying it through the Azure Portal. The only differ-
ences are that Azure Database for MariaDB does not require you to select Single Server or 
Flexible Server and it does not have an Additional Settings tab.

Azure Database for PostgreSQL

PostgreSQL is an open-source object-relational database system that uses SQL for native 
queries. It uses a robust feature set with standard and complex data types, including these:

■■ Primitives: Integer, numeric, string, Boolean

■■ Document: JSON/JSONB, XML, key-value pair

■■ Geometry: Point, line, circle, polygon

The PostgreSQL database engine is also highly extensible, allowing users to define their 
own data types and custom functions with its proprietary language PL/PGSQL or other 
common development languages like Perl and Python. There are also custom extensions 
available that solve specific business problems, such as the PostGIS geospatial database 
extender. This extension adds geospatial-specific functionality that effectively turns Post-
greSQL into a spatial database management system. More information about PostgreSQL 
and PostGIS can be found at www.postgresql.org/about.

Azure Database for PostgreSQL is a PaaS relational database offering based on the Post-
greSQL Community Edition. Supported versions of the PostgreSQL database engine include 
9.6, 10, and 11 for Single Server as well as 11, 12, and 13 for Flexible Server. Azure Data-
base for PostgreSQL includes the same service tier resource configurations as Azure Data-
base for MySQL for its Single Server and Flexible Server deployment models. It also includes 
the same configuration options as Azure Database for MySQL when deploying it through 
the Azure Portal.

https://mariadb.org
https://www.postgresql.org/about/


96  Chapter 2  ■  Relational Databases in Azure

Along with the Single Server and Flexible Server deployment models, Azure Database for 
PostgreSQL also includes a Hyperscale deployment option. Hyperscale (Citus) horizontally 
scales queries across multiple nodes through data sharding. This deployment option is typ-
ically used for multi-tenant applications that require greater scale and performance, such 
as real-time operational and high throughput transactional workloads. Azure Database for 
PostgreSQL Hyperscale (Citus) supports versions 11, 12, and 13 of the PostgreSQL data-
base engine.

Management Tasks for Relational 
Databases in Azure
While Azure removes many of the rigid maintenance demands that come with managing an on-
premises relational database environment, there are still several management tasks that must be 
handled. Failing to give these tasks the proper attention will result in poor database performance 
or, even worse, potential security risks. These common management tasks are included:

■■ Managing the deployment of the database through the Azure Portal or with automa-
tion scripts

■■ Migrating existing on-premises relational data to the new environment in Azure

■■ Maintaining data security through network isolation, access management, threat protec-
tion, and data encryption

There are also times that connectivity issues arise and must be troubleshooted. These can 
be the result of unexpected and expected behavior depending on how the service is config-
ured in Azure. The following sections detail these tasks as well as some of the tools that can 
be used for database management.

Deployment Scripting and Automation
Cloud environments such as Azure greatly reduce the complexity involved in standing up 
a relational database. Tasks such as procuring hardware, installing network devices, and 
reserving capacity in a datacenter that previously required months of planning and imple-
mentation are reduced to a matter of minutes. Relational databases in Azure can also be 
scaled down or deleted just as quickly when they are not needed, allowing organizations to 
cut costs on services not being used.

In the previous sections we discussed how organizations can leverage the Azure Portal to 
manually deploy a relational database service. While this makes it easy to get started with 
a database in a single environment, it is not the most practical solution for deploying data-
bases to multiple environments. Most organizations use several application development 
life cycle stages such as development, test, and quality assurance to make sure each release 
of an application meets a specific level of satisfaction before being pushed to production. 



Management Tasks for Relational Databases in Azure  97

Cloud-based services make this process easy by allowing development teams to package their 
infrastructure requirements in automation scripts that describe each service to be deployed 
and their desired configuration. These scripts can be parameterized to meet the cost and 
performance needs of different environments used in an application’s development life cycle.

Azure offers three primary options for scripting out service deployments: Azure Power-
Shell, Azure CLI, and Infrastructure as Code templates. Azure PowerShell and the Azure CLI 
are command-line utilities that allow users to script their deployments with PowerShell or 
Bash. While these tools can be used to deploy services in Azure, the most common use for 
them is managing automated Infrastructure as Code deployments. Infrastructure as Code 
templates define the services being deployed and their desired settings. Terraform and Azure 
Resource Manager (ARM) are the most common Infrastructure as Code services that are  
used to automate Azure deployments. Building and deploying services with Terraform 
are outside of the scope for the DP-900 exam and will not be covered in this book. More 
information can be found at www.terraform.io if you would like to learn more about 
Terraform.

Azure PowerShell
Azure PowerShell includes a powerful set of PowerShell cmdlets (pronounced command-
lets) that can be used to manage and administer Azure services from a command line. Scripts 
developed with Azure PowerShell can be run in the Azure Portal through the Azure Cloud 
Shell or through the Windows PowerShell command prompt or Integrated Scripting  
Environment (ISE) on a local machine or VM. Keep in mind that developing and running 
Azure PowerShell scripts locally requires the Azure Az PowerShell module to be installed on 
the machine. Steps and considerations for installing the Azure Az PowerShell module can 
be found at https://docs.microsoft.com/en-us/powershell/azure/install-
az-ps?view=azps-6.3.0#installation. This module comes preinstalled on the Azure 
Cloud Shell, allowing users to immediately use the Azure Az module cmdlets in  
PowerShell scripts.

The Azure Cloud Shell is a web-based interface that allows users to run PowerShell and 
Azure CLI scripts in the Azure Portal. You can access the Azure Cloud Shell by selecting the 
Cloud Shell icon in the upper-right corner of the Azure Portal. Figure 2.16 illustrates what 
this icon looks like in the Azure Portal.

Once the Azure Cloud Shell loads at the bottom of the screen, you will be able to develop 
and run Bash or PowerShell scripts to manage Azure services. Switch from Bash to Power-
Shell to run Azure PowerShell commands.

F IGURE 2 .16   Azure Cloud Shell icon

http://www.terraform.io
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-6.3.0#installation
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps?view=azps-6.3.0#installation


98  Chapter 2  ■  Relational Databases in Azure

Relational databases can be easily deployed using an Azure PowerShell script. These 
scripts can define every option related to deploying a relational database, such as where it is 
deployed, the type of database, the administrator account username and password, network 
isolation settings, and the service tier. The following code snippet is an Azure PowerShell 
script that creates the following resources:

■■ A resource group to logically contain the logical server and its databases

■■ A logical server and an IP firewall rule that will open port 1433 on the logical server to 
a defined range of IP addresses

■■ The username and password for the server’s administrator account

■■ An Azure SQL Database, its initial service tier, and the initial number of vCores it 
is allocated

<# 
Sign into your Azure environment. Not 
required if running this script in the Azure Cloud Shell
#>
Connect-AzAccount
 
<#
Set the ID for the Subscription this database 
is being deployed to. Also not needed if running in the Azure Cloud Shell
#>
$SubscriptionId = "<Azure Subscription ID>"
 
# Set the resource group name and location for the logical server
$resourceGroupName = "sql001"
$location = "eastus2"
 
# Set an admin login and password for your server
$adminSqlLogin = "dp900admin"
$password = "<Admin Password>"
 
# Set a logical server name
$serverName = "dp900sql001sv"
 
# Set a database name



Management Tasks for Relational Databases in Azure  99

$databaseName = "dp900sql001db"
 
<# 
The IP address range that you want to allow to 
access your server. This is optional and can be
set after the deployment has finished.
#>
$startIp = "<First IP Address in Range>"
$endIp = "<Last IP Address in Range>"
 
# Set subscription
Set-AzContext -SubscriptionId $subscriptionId
 
# Create the resource group
$resourceGroup = New-AzResourceGroup -Name $resourceGroupName -Location ` 
$location
 
# Create the logical server
$server = New-AzSqlServer -ResourceGroupName $resourceGroupName `
 -ServerName $serverName `
 -Location $location `
 -SqlAdministratorCredentials $(New-Object -TypeName System.Management 
.Automation.PSCredential 
-ArgumentList $adminSqlLogin, 
$(ConvertTo-SecureString -String $password -AsPlainText -Force))
 
<#
Create a server firewall rule that allows
access from the specified IP range
#>
$serverFirewallRule = New-AzSqlServerFirewallRule `
 -ResourceGroupName $resourceGroupName `
 -ServerName $serverName `
 -FirewallRuleName "AllowedIPs" -StartIpAddress $startIp -EndIpAddress ` 
$endIp
 
# Create a blank database that uses the General Purpose service tier
$database = New-AzSqlDatabase -ResourceGroupName $resourceGroupName `
 -ServerName $serverName `
 -DatabaseName $databaseName `
 -Edition "GeneralPurpose" `
 -Vcore 2



100  Chapter 2  ■  Relational Databases in Azure

Azure Command-Line Interface
The Azure CLI is a command-line tool that allows users to create and manage Azure 
resources. As with Azure PowerShell, scripts developed using the Azure CLI can be executed 
through the Azure Cloud Shell or through an interactive shell on a local machine or VM. 
Azure CLI commands can be run through a command prompt such as cmd.exe or through 
PowerShell on a Windows machine or a Bash shell in a Linux or macOS environment. Steps 
and considerations for installing the Azure CLI on a local machine or VM can be found at 
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli.

The following code snippet is an Azure CLI script that performs the same actions as the 
previous Azure PowerShell script:

#!/bin/bash
 
# Set the subscription. Not required if being run in the Azure Cloud Shell
az account set—subscription <replace with your subscription name or id>
 
# Set the resource group name and location for your database
resourceGroupName=sql001
location=eastus2
 
# Set an admin login and password for the logical server adminlogin=dp900admin
password=<Admin Password>
 
# Set a logical server and database name
servername=dp900sql001sv
databasename=dp900sql001db
 
<#
The IP address range that you want to 
allow to access your server. This is optional and 
can be set after the deployment has finished.
#>
startip=<First IP Address in Range>
endip=<Last IP Address in Range>
 
# Create a resource group
az group create \
—name $resourceGroupName \

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli


Management Tasks for Relational Databases in Azure  101

—location $location
 
# Create a logical server in the resource group
az sql server create \
—name $servername \
—resource-group $resourceGroupName \
—location $location \
—admin-user $adminlogin \
—admin-password $password
 
# Configure a firewall rule for the server
az sql server firewall-rule create \
—resource-group $resourceGroupName \
—server $servername \
 -n AllowYourIp \
—start-ip-address $startip \
—end-ip-address $endip
 
# Create a database in the server
az sql db create \
—resource-group $resourceGroupName \
—server $servername \
—name $databasename \
—edition GeneralPurpose \
—capacity 2

Azure Resource Manager Templates
Before diving into how Azure Resource Manager (ARM) templates are defined, we first need 
to establish what ARM is. ARM is the deployment and management service that enables 
users to create, update, and delete resources in Azure. It receives, authenticates, and autho-
rizes all requests made by APIs, the Azure Portal, Azure PowerShell, Azure CLI, or applica-
tions using one of the Azure SDKs.

ARM uses resource providers to know which Azure resources are involved in a request. 
Resource providers supply different resource types in Azure as well as all the configuration 
details that they require. One common resource provider is Microsoft.Sql, which includes 
the Azure SQL Database, Azure SQL MI, and Azure Synapse Analytics resource types. These 
resources can be specified using the syntax {resource provider}/{resource type}. Examples 
include Microsoft.Sql/servers or Microsoft.Sql/managedInstances. Resource providers are 
also the fundamental building blocks of ARM templates, as all other items in the template 
will be related to the configuration requirements of the resources defined in the template.



102  Chapter 2  ■  Relational Databases in Azure

While many resource providers are registered to an Azure subscription 
by default, there are several that must be registered manually through the 
Azure Portal, Azure PowerShell, or Azure CLI. Steps to manually enable 
a resource provider can be found at https://docs.microsoft.com/
en-us/azure/azure-resource-manager/management/resource-
providers-and-types#azure-portal.

ARM templates are JSON files that define the resources and configuration requirements 
for a deployment to Azure. Templates are defined using a declarative syntax, meaning that 
they are written in a way that describes what resources are needed and each one’s desired 
configuration without needing to worry about the programming commands that will create 
them. Resources defined in an ARM template can also have dependencies on other resources. 
Dependencies will prevent the template from attempting to deploying a resource if a resource 
it depends on is not available. Templates can then be deployed from Azure PowerShell and 
Azure CLI scripts, the Azure Portal, and tools like Azure DevOps that manage continuous 
integration and continuous development (CI/CD) pipelines.

You can think of an ARM template like a food order placed through an online delivery 
service. When you place an order, you declaratively list what items you want to eat. This 
may include appetizers, main dishes, side orders, and desserts, depending on what you want 
included in the order. The size of the order may also vary, depending on whether you are 
ordering just for yourself or also for other people. Certain items, such as a steak, also require 
you to state how you would like them to be cooked. Once the order is placed, the restaurant 
will handle the low-level details involved in preparing, cooking, and packaging the food.

Understanding the full scope of ARM templates and how they can be 
integrated into continuous integration and continuous deployment 
pipelines is outside of the scope for the DP-900 exam. If you would 
like to learn more about customizing ARM templates with parameters, 
information can be found at the following learning path: https://docs 
.microsoft.com/en-us/learn/modules/create-azure-resource-
manager-template-vs-code.

Defining an ARM Template

The following is a list of required and optional elements that make up an ARM template:

■■ schema—This is a required section that defines the location of the JSON schema file 
that describes the structure of the JSON data.

■■ contentVersion—This is a required section that defines the version of your template.

■■ apiProfile—This is an optional section that defines a collection of API versions for 
resource types.

■■ parameters—This is an optional section where you define values that are provided dur-
ing deployment. Parameters are values that change depending on the environment the 
resources are being deployed to. These values can be provided by a parameter file, Azure 
PowerShell, or Azure CLI or in the Azure Portal.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resource-providers-and-types#azure-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resource-providers-and-types#azure-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/resource-providers-and-types#azure-portal
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/
https://docs.microsoft.com/en-us/learn/modules/create-azure-resource-manager-template-vs-code/


Management Tasks for Relational Databases in Azure  103

■■ variables—This is an optional section where you define values that are reused in 
your template.

■■ functions—This is an optional section where you can define user-defined functions that 
simplify complicated expressions that may be used often in your template.

■■ resources—This is a required section where you define the resources you want to create 
or update in Azure.

■■ output—This is an optional section where you specify the values that will be returned at 
the end of the deployment.

The following is an example of an ARM template that will create an Azure SQL Data-
base. The template definition includes the following elements:

■■ The logical server name.

■■ The username and password for the server’s administrator account.

■■ An Azure SQL Database, its initial service tier, and its performance SKU.

{
  "$schema": "https://schema.management
.azure.com/schemas/2019–04–01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "serverName": {
      "type": "string",
      "defaultValue": "dp900sql001sv",
      "metadata": {
        "description": "The name of the SQL logical server."
      }
    },
    "sqlDBName": {
      "type": "string",
      "defaultValue": "dp900sql001db",
      "metadata": {
        "description": "The name of the SQL Database."
      }
    },
    "location": {
      "type": "string",
      "defaultValue": "eastus2",
      "metadata": {
        "description": "Location for all resources."
      }
    },



104  Chapter 2  ■  Relational Databases in Azure

    "administratorLogin": {
      "type": "string",
      "metadata": {
        "description": "The administrator username of the SQL logical server."
      }
    },
    "administratorLoginPassword": {
      "type": "securestring",
      "metadata": {
        "description": "The administrator password of the SQL logical server."
      }
    }
  },
  "variables": {},
  "resources": [
    {
      "type": "Microsoft.Sql/servers",
      "apiVersion": "2020–02–02-preview",
      "name": "[parameters('serverName')]",
      "location": "[parameters('location')]",
      "properties": {
        "administratorLogin": "[parameters('administratorLogin')]",
        "administratorLoginPassword": "[parameters('administratorLoginPassword')]"
      },
      "resources": [
        {
          "type": "databases",
          "apiVersion": "2020–08–01-preview",
          "name": "[parameters('sqlDBName')]",
          "location": "[parameters('location')]",
          "sku": {
            "name": "GP_Gen5_2",
            "tier": "GeneralPurpose",
          },
          "dependsOn": [
            "[resourceId('Microsoft.Sql/servers',
                concat(parameters('serverName')))]"
          ]
        }
      ]
    }
  ]
}



Management Tasks for Relational Databases in Azure  105

This template can then be deployed through the Azure Portal, Azure PowerShell, or Azure 
CLI. The following is an example of an Azure PowerShell script that deploys the preceding 
ARM template to a new resource group. It also defines the administrator username and pass-
word for the logical server and passes the information to the template as it is being deployed. 
This script also assumes that the template is located in the same folder as the Azure Power-
Shell script with the name azuredeploy.json.

Connect-AzAccount
 
# Set an admin login and password for your server
$adminSqlLogin = "dp900admin"
$password = "<Admin Password>"
 
New-AzResourceGroup -Name sql001 -Location eastus
New-AzResourceGroupDeployment -ResourceGroupName `
arm-vscode -TemplateFile ./azuredeploy.json `
-administratorLogin $adminSqlLogin `
-administratorLoginPassword $password

There are several commonly used ARM templates available on the azure-
quickstart-templates GitHub repository. These templates range from 
single resource deployments to multiple resource deployments for differ-
ent application workloads. Feel free to reference these templates as you 
are building out your own automated deployments in Azure. You can find 
these templates at https://github.com/Azure/azure-quickstart-
templates.

Migrating to Azure SQL
There are a variety of methods available for migrating a database from an on-premises 
SQL Server instance to Azure SQL. Migrating a database to a SQL Server on Azure VM is 
relatively straightforward unless you are upgrading from an older version of SQL Server 
and need to update any deprecated features. The following migration options are com-
monly included:

■■ Taking a backup of the on-premises database and storing it in Azure Blob storage. 
Restore the database backup from Azure Blob storage to the SQL Server on Azure VM 
using RESTORE DATABASE FROM URL.

■■ If the on-premises instance is a primary in an Always On AG, add the SQL Server on 
Azure VM as a secondary. Once the data is synchronized to the SQL Server on Azure 
VM, perform a failover so that the SQL Server on Azure VM is the new primary.

https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates


106  Chapter 2  ■  Relational Databases in Azure

■■ Configure transactional replication so that the on-premises SQL Server instance is a 
publisher and the SQL Server on Azure VM is a subscriber. Once the data is replicated 
to the SQL Server on Azure VM, update application connection strings and point users 
to the database in Azure.

Migrating to Azure SQL Database or Azure SQL MI requires more planning and 
consideration due to compatibility differences between on-premises SQL Server and PaaS 
Azure SQL. Even though Azure SQL MI is nearly 100 percent compatible with on-premises 
SQL Server, there are still some feature differences between the two that could cause migra-
tion issues. The same can be said about the differences between an on-premises instance of 
MySQL and PostgreSQL and Azure Database for MySQL and Azure Database for Post-
greSQL. This is where a service such as the Azure Database Migration Service can provide 
data that makes the migration planning process much easier.

The Azure Database Migration Service (DMS) is a fully managed service that can be 
used to discover any potential compatibility issues and migrate the database once those 
issues are addressed. It uses the Data Migration Assistant (DMA) to detect compatibility 
issues and make recommendations on how to address them. DMA is also useful for  
migrations to a SQL Server on Azure VM by discovering compatibility issues between an 
older version of SQL Server and a newer version on the Azure VM. DMA can be used to 
assess versions of SQL Server ranging from SQL Server 2005 to the most up-to-date ver-
sion. After addressing any compatibility issues, DMA can be used to migrate the database’s 
schema to streamline data migration with DMS.

DMS can be used for offline and online migrations. Offline migrations refer to applica-
tion downtime beginning as soon as the migration starts. Application cutover is a manual 
process and must be performed by the user. Offline migrations are available for migrations 
to Azure SQL Database, Azure SQL MI, SQL Server on Azure VM, Azure Cosmos DB, Azure 
Database for MySQL, and Azure Database for PostgreSQL. DMS can also limit downtime 
by handling the application cutover process through an online migration. Online migrations 
are only available for migrations to Azure SQL MI, Azure Cosmos DB, and Azure Database 
for PostgreSQL.

Database Security
Database security is paramount for any RDBMS. For this reason, relational databases in 
Azure enforce database security through the following methods:

■■ Network isolation

■■ Access management

■■ Data encryption and obfuscation

■■ Security management

Each of these methods represents a different level of security for protecting data from 
nonauthorized access. While many of the tasks related to the different security layers are 
applied the same way across the different relational database offerings in Azure, there are 
some tasks that are handled differently from one database platform to another. For example, 



Management Tasks for Relational Databases in Azure  107

network isolation is implemented very differently on a SQL Server on Azure VM than it is 
on an Azure SQL Database.

Since network isolation was a core topic in the sections detailing the different relational 
database offerings in Azure, the following sections will focus on access management, data 
encryption and obfuscation, and security management capabilities.

Access Management
Access management for relational databases in Azure is centered around the concept of 
least-privilege. This starts at the infrastructure level in Azure with role-based access controls 
(RBACs), allowing organizations to limit who can manage database operations that are han-
dled in Azure such as changing maintenance windows and scaling compute resources users 
to only users who need this type of access. The next step is to limit database access to only 
the users that need access to it, also known as database authentication. Finally, users that can 
authenticate to a database will need to be granted varying levels of permission to the data 
and objects in the database, which should be set to the least amount of privilege needed by a 
user. This is known as a user’s authorization level. The following sections explore these dif-
ferent levels of access management.

Role-Based Access Control (RBAC)

Management operations for relational databases that are handled through Azure such as net-
work isolation, scaling compute resources, and changing maintenance windows is controlled 
through RBAC. RBAC is an authorization system built on ARM that provides fine-grained 
access management of Azure resources to users and objects in Azure Active Directory. It is 
important to note that RBAC is decoupled from database-level security, so these roles do not 
affect database access.

Higher-level RBAC roles such as Owner and Contributor can be used to manage SQL 
resources but grant additional permissions that may not be necessary. There are built-in 
RBAC roles specific to Azure SQL that can be granted to Azure Active Directory accounts 
that eliminate the need for higher-level roles for managing Azure SQL resources. PaaS 
relational databases include the following built-in roles:

■■ SQL DB Contributor—Lets a user manage Azure SQL Databases but not access them. 
Also, this role does not allow users to manage the security-related policies or their asso-
ciated logical servers.

■■ SQL Managed Instance Contributor—Lets a user manage Azure SQL MIs and required 
network configuration but not access them.

■■ SQL Security Manager—Lets a user manage the security-related policies of Azure SQL 
Databases and logical servers that manage databases but not access them.

■■ SQL Server Contributor—Lets a user manage Azure SQL Databases and their associ-
ated logical servers but not access them. Also, this role does not allow users to manage 
the security-related policies.

These roles do not apply to SQL Server on Azure VMs because the database engine 
is managed in the VM. However, there are VM-specific RBAC roles that can be used to 



108  Chapter 2  ■  Relational Databases in Azure

manage the VM configuration. More on these and other built-in RBAC roles can be found 
at https://docs.microsoft.com/en-us/azure/role-based-access-control/
built-in-roles.

Authentication

Authentication is the process of validating the identity of users trying to access a database. 
All versions of Azure SQL support two authentication methods: SQL authentication and 
Active Directory (AD).

SQL authentication involves storing SQL Server–specific login name and password 
information in the master database, or in the user database for database contained users. As 
a matter of fact, the administrator account that is defined when creating a SQL Server on 
Azure VM, Azure SQL MI, Azure SQL Database, or Azure Synapse Analytics dedicated SQL 
pool is an example of a SQL login. The administrator can also create additional SQL logins 
that other users or automation services such as the SQL Server Agent or Azure Data Factory 
can use to interact with the database.

Active Directory authentication involves adding a user or group stored in Windows AD 
or Azure AD (AAD) as a login or contained user in SQL. This is the preferred method of 
authentication as it is more secure than SQL authentication and is easier to manage. SQL 
Server on Azure VMs can use Windows AD logins for authentication if the VNet that con-
tains the SQL Server on Azure VM is joined to a domain that has AD. As of the writing of 
this book, SQL Server on Azure VMs cannot use AAD users and groups for authentication. 
Azure SQL Database and Azure SQL MI, on the other hand, can use AAD objects. The fol-
lowing steps outline how to add an AAD user or group as an administrator for an Azure 
SQL Database logical server.

1.	 Log into portal.azure.com and search for SQL servers in the search bar at the top of 
the page. Click SQL servers to go to the SQL servers page in the Azure Portal. This page 
is the home of the logical servers for your Azure SQL Databases.

2.	 Click on the logical server that was created when you built an Azure SQL Database.

3.	 Click Azure Active Directory under Settings in the left-hand side panel. Click Set admin 
to add an AAD user or group as an administrator on the server. Figure 2.17 illustrates 
how this page will appear before clicking Set admin.

4.	 Once you have added an account, click Save to save the account as the administrator.

F IGURE 2 .17   Adding an AAD Administrator

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
http://portal.azure.com


Management Tasks for Relational Databases in Azure  109

Non-administrator AAD users and groups can also be added using T-SQL. To add 
additional AAD users and groups as database users, connect to the logical server using a 
management tool like SQL Server Management Studio (more on management tools later 
in this chapter) with a login that has permission to create users in the database. This can 
include the SQL authentication server administrator or the AAD server administrator. Once 
you’re logged in, the following command can be used to add a contained user to a database.

CREATE USER [<AAD_User>] FROM EXTERNAL PROVIDER;

There are three methods available for using an AAD login to connect to a database. 
The correct choice depends on how an organization configures AAD. These methods are 
as follows:

■■ Azure Active Directory—Integrated: This method can be used if the user signed into the 
Windows machine that they are connecting to the database from with an AAD account.

■■ Azure Active Directory—Password: this method forces the user to enter the AAD login 
name and password to connect to the database.

■■ Azure Active Directory—Universal with MFA: This is an interactive method that uses 
multi-factor authentication (MFA) to provide additional access security for the database.

Authorization

Authorization refers to the level of permissions a user has in the database. Some of these per-
missions include whether they can read or write data in different tables, execute stored pro-
cedures, and add or delete other users. Permissions are typically managed by database roles 
that include a predefined set of permissions. Database roles include fixed-database roles that 
are included in SQL Server and Azure SQL and user-defined database roles that are created 
by a database administrator.

There are several fixed-database roles available out of the box with any 
version of SQL Server or Azure SQL. An extensive list of the available 
fixed-database roles in Azure SQL can be found at https://docs 
.microsoft.com/en-us/sql/relational-databases/security/
authentication-access/database-level-roles?view=sql-
server-ver15#fixed-database-roles.

User permissions can also be managed by object-level permissions, such as granting or 
revoking the ability to select, update, or delete data in a specific table or view. Object-level 
permissions can also go as far as limiting which columns users have access to. An example 
of denying access to specific columns in a table with T-SQL would look like the following 
statement:

DENY SELECT ON <table_name>(<column_1, column_2>) TO User

There is also a special type of database authorization that limits access to specific rows in 
different tables. Row-level security (RLS) allows database administrators to control access to 
rows in a table based on the characteristics of the user running a query. This is implemented 

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15#fixed-database-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15#fixed-database-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15#fixed-database-roles
https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15#fixed-database-roles


110  Chapter 2  ■  Relational Databases in Azure

through user-defined table valued functions that block access to rows based on certain 
security predicates. RLS supports two types of security predicates to prevent user access to 
specific rows:

■■ Filter predicates that silently filter the rows available to read operations

■■ Block predicates that block write operations that violate the predicate

Data Encryption and Obfuscation
Azure provides a variety of methods to protect data from malicious activity by encrypting 
data in-transit and at rest. These help to ensure that if a disk hosting a database, a data file, 
a database backup, or connections to a database becomes compromised, then the data is 
unreadable.

Azure SQL and open-source SQL databases in Azure use Transport Layer Security (TLS) 
to encrypt data in-transit. TLS encrypts data sent over the Internet to ensure that hackers 
are unable to see the data that is transmitted. Supported versions include 1.0, 1.1, and 
1.2. Depending on application requirements, a minimum TLS version can be set so that 
application connections using the minimum allowed TLS version or higher can connect to 
that database.

Azure also encrypts data at rest by encrypting the disks that support the various database 
options. This ensures that if disks involved in hosting a database (e.g., data, log, and tempdb 
disks) are hacked, the data on those disks will be unreadable. Along with encrypting the 
physical disk, there are a few additional encryption measures that are native to SQL Server 
and Azure SQL that ensure a database is encrypted at rest. These are discussed further in the 
following sections.

Transparent Data Encryption (TDE)

Transparent Data Encryption (TDE) is a SQL Server feature that encrypts all the data within 
a database at the page level. TDE is available for databases hosted in a SQL Server on Azure 
VM, Azure SQL Database, Azure SQL MI, and Azure Synapse Analytics dedicated SQL pool. 
Data is encrypted as it is written to the data page on disk and decrypted when the data page 
is read into memory. TDE also encrypts database backups since a backup operation is simply 
copying the data and log pages from the database.

Encryption with TDE is done by using a symmetric key called the Database Encryp-
tion Key (DEK). The DEK is managed by default by a service-managed certificate in Azure. 
Organizations can also use their own certificate, a method known as Bring Your Own Key 
(BYOK), to manage the DEK. Customer-managed certificates can be managed in Azure 
Key Vault.

TDE is enabled by default for Azure SQL Database and Azure SQL MI and 
can be manually enabled for SQL Server databases that are hosted  
on a VM.



Management Tasks for Relational Databases in Azure  111

Always Encrypted

In addition to encrypting entire databases at rest with TDE, SQL Server and Azure SQL 
allow organizations to encrypt individual columns in tables with Always Encrypted. This 
feature is designed to allow organizations to protect sensitive data such as credit card num-
bers or personally identifiable information (PII) stored in database tables. Always Encrypted 
allows client applications to encrypt data inside the application, never revealing the encryp-
tion keys to the database engine. This allows organizations to separate who can manage the 
data, like a database administrator, and who can read it.

Always Encrypted uses a column encryption key to encrypt the column data with either 
randomized encryption or deterministic encryption, and a master encryption key that 
encrypts the column encryption key. Neither of these are stored in the database engine and 
are instead stored in an external trusted key store such as Azure Key Vault. The only values 
of the two keys that are stored in the database engine are the encrypted values of the column 
encryption key and the information about the location of the master key.

Client applications accessing encrypted data must use an Always Encrypted client driver. 
The driver will be able to access the key store where the column and master encryption keys 
are located and will use them to decrypt the data as it is served to the application. Applica-
tions writing data to encrypted columns will also use the Always Encrypted client driver to 
ensure that data is encrypted as it is written. It is important to reiterate here that the data is 
never decrypted at the database engine, only at the application level.

Dynamic Data Masking

Dynamic data masking limits the exposure of sensitive data to application users by obfus-
cating data in specific columns. Applications reading data from tables with masked columns 
do not need to be updated because dynamic data masking rules are applied in the query 
results, which does not change the data stored in the database. This means that users can 
view columns that are masked, but without seeing the actual data stored in the columns.

There are a variety of masking patterns that can be used to obfuscate column data. The 
following masking patterns are available for SQL Server and Azure SQL:

■■ Default—Fully masks the data in the column. Users will see XXXX for string values, 0 
for numbers, and 01.01.1900 for date values.

■■ Email—Masks everything in an email address other than the first letter in the email and 
the suffix .com (e.g., jXXXX@XXXX.com).

■■ Random—Replaces numeric data with a random value from a specified range of values.

■■ Custom—Exposes the first and last digits of a piece of data and adds a custom padding 
string in the middle (e.g., 5XXX0).

These masking patterns can be enabled through the Azure Portal or T-SQL. There is also 
an additional pattern available through the Azure Portal.

Dynamic data masking is designed to limit data exposure to a set of predefined queries 
without any change needed to application code. However, it is important to note that the 

mailto:jXXXX@XXXX.com


112  Chapter 2  ■  Relational Databases in Azure

data that is masked is not encrypted and can be bypassed using inference or brute-force tech-
niques. It is designed to be complementary to other security features such as TDE, Always 
Encrypted, and RLS.

Security Management
Once data is secured through network isolation, access management, and data encryption 
and obfuscation techniques, it is important to make sure data security is maintained on an 
ongoing basis. The following methods are available through Azure and the database engine 
to manage database security.

Auditing

Organizations enable auditing for Azure SQL to maintain regulatory compliance, understand 
database activities, and monitor databases for discrepancies that could indicate suspicious 
activity. SQL Server on Azure VM and Azure SQL MI use traditional SQL Server auditing 
through the database engine. This produces audit logs that contain predefined server-level 
or database-level events. Azure SQL Database and Azure Synapse Analytics dedicated SQL 
pools use Azure SQL Auditing to write audit logs to Azure Blob storage, Azure Log Ana-
lytics, or Azure Event Hubs. Azure SQL Auditing can be enabled through the Azure Portal.

Azure Defender for SQL

Azure Defender provides several SQL security management capabilities. It includes function-
ality for monitoring and mitigating potential database vulnerabilities and detecting poten-
tially malicious activity. It can be enabled through the Azure Portal at the Azure subscription 
level for all instances of Azure SQL in a subscription or at the server level for a single in-
stance of Azure SQL. These security capabilities are covered by the following two tools that 
are packaged in the Azure Defender service: SQL Vulnerability Assessment and Advanced 
Threat Protection.

The SQL Vulnerability Assessment is a scanning service that provides insight into the  
state of your database’s security. It also provides action items that a database administrator 
can take to resolve any found security issues. To catch security vulnerabilities in a database, 
the SQL Vulnerability Assessment employs several rules that are based on Microsoft best 
practices for database security. These rules cover database-level and server-level issues, such 
as firewall settings and excessive permissions for logins. The full list of rules that are used  
by the SQL Vulnerability Assessment can be found at https://docs 
.microsoft.com/en-us/azure/azure-sql/database/sql-database- 
vulnerability-assessment-rules.

Advanced Threat Protection is a tool that enables organizations to detect and respond 
to potentially malicious attempts to access a database. The tool will send alerts and rec-
ommended action items to users when it detects harmful database activities such as SQL 
injection, data exfiltration, anonymous logins, and brute force access. It is available for all 
versions of Azure SQL as well as Azure Synapse Analytics dedicated SQL pools.

https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-database-vulnerability-assessment-rules
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-database-vulnerability-assessment-rules
https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-database-vulnerability-assessment-rules


Management Tasks for Relational Databases in Azure  113

Common Connectivity Issues
There will be times when connectivity issues occur with a database. These issues can be 
related to network or firewall configuration, authentication timeouts, or transient fault 
errors related to Azure dynamically reconfiguring a database to meet heavy workloads. The 
following sections list common connectivity issues and how to troubleshoot them.

Network-related or Instance-specific Issues
The “A network-related or instance-specific error occurred while establishing a connection 
to your server” error message indicates that an application cannot find the database server 
it is trying to connect to. The most common methods for troubleshooting this issue are 
as follows:

1.	 Making sure that TCP/IP is enabled as a client protocol on the application server. On 
servers that have SQL tools installed, such as a SQL Server on Azure VM, TCP/IP can be 
enabled by using the following steps in SQL Server Configuration Manager:

a.	 Expand SQL Server Native Client Configuration and click on Client Protocols.

b.	 Double-click TCP/IP and change Enabled from No to Yes.

Application servers that do not have SQL tools installed can also be checked to see if 
TCP/IP is enabled by running the SQL Server Client Network utility (cliconfig.exe).

2.	 Make sure that the connection string specifies the right port (1433 by default) and is 
using the fully qualified server name. An example of a fully qualified logical server name 
for Azure SQL Database would be dp900sql001.database.windows.net.

3.	 Connection timeout can be the root cause for applications that are connecting over a 
slow network. This can be alleviated by increasing the connection timeout in SQL. The 
Microsoft recommended connection timeout is at least 30 seconds.

Firewall-related Issues
The “Cannot connect to server due to firewall issues” error message indicates that the the 
client application’s IP address is not whitelisted by the server-level or the database-level fire-
wall. Add the IP address as a server-level or database-level firewall rule to alleviate this issue.

Keep in mind that if the database is hosted on an Azure SQL MI or is an Azure SQL 
Database that is using a private endpoint, then an application trying to communicate with 
the database will need to be able to communicate with the VNet the database is in. This 
would include the following applications:

■■ Applications that are hosted in the same VNet as the database.

■■ Applications that are hosted in a network that can communicate with the VNet hosting 
the database. This can be done through VNet peering, a VPN, or Azure ExpressRoute.

http://dp900sql001.database.windows.net


114  Chapter 2  ■  Relational Databases in Azure

■■ Applications that are allowed to communicate with resources in a VNet hosting a data-
base through an NSG or Azure Firewall. More on network security rules in NSGs can 
be found at https://docs.microsoft.com/en-us/azure/virtual-network/
network-security-groups-overview.

Log In Failure with a Database Contained User
The “Cannot open database “master” requested by the login. The login failed” error occurs 
because the account logging into the server does not have access to the master database. This 
is typical for database contained users that are trying to connect to the database with SQL 
Server Management Studio (SSMS). Use the following steps to resolve this issue:

1.	 When establishing a connection to a SQL instance in SSMS, click Options in the bottom 
left-hand corner of the Connect to Server page and select Connection Properties.

2.	 In the Connect to database field, type the name of the database the user is contained 
in and click Connect. Figure 2.18 is an example of the Connection Properties tab 
connecting to a specified user database.

F IGURE 2 .18   Connecting to a user database with SSMS

https://docs.microsoft.com/en-us/azure/virtual-network/network-security-groups-overview
https://docs.microsoft.com/en-us/azure/virtual-network/network-security-groups-overview


Management Tasks for Relational Databases in Azure  115

Transient Fault Errors
Transient fault errors occur when Azure dynamically reconfigures the infrastructure on 
which the database is hosted. These can include planned events such as database upgrades 
and unplanned events such as load balancing. Reconfiguration events that cause transient 
fault errors are typically short-lived and last less than 60 seconds. However, this can still 
cause problems since applications connecting to databases during this time may experi-
ence some connectivity issues. For this reason, applications should be built with retry logic 
to repeat a transaction if it fails due to a transient error. Transient errors are raised by the 
throw of a SqlException and are identified as one of a few error codes. This allows error 
handling logic to include a retry policy for exceptions that include a transient error code. The 
full list of transient error codes can be found at https://docs.microsoft.com/en-us/
azure/azure-sql/database/troubleshoot-common-errors-issues#transient-
fault-error-messages-40197–40613-and-others.

More information on transient fault errors and other common connec-
tivity issues can be found at https://docs.microsoft.com/en-us/
azure/azure-sql/database/troubleshoot-common-errors-
issues.

Management Tools
In previous sections, we established that tools like the Azure Portal and Azure PowerShell 
are powerful mechanisms for managing relational database deployments in Azure. However, 
there are other tools that developers use to write, test, and optimize queries before adding 
them to applications. These tools are also used by database administrators to perform tasks 
such as managing table design, indexes, and user permissions. The following sections provide 
a brief overview of the three most popular database management tools.

SQL Server Management Studio
SQL Server Management Studio, or SSMS for short, has been used by database administra-
tors and developers for years. It can connect to any type of SQL Server–based infrastructure, 
including SQL Server, Azure SQL, and Azure Synapse Analytics dedicated SQL pools. Once 
connected to a database, SSMS can be used to administer and develop all components of 
SQL, including the following tasks:

■■ Building and managing database objects such as tables, stored procedures, functions, 
and triggers

■■ Developing and optimizing queries

■■ Managing security operations

■■ Performing database backup and restore operations

■■ Building HADR solutions such as an Always On availability group

https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#transient-fault-error-messages-40197–40613-and-others
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#transient-fault-error-messages-40197–40613-and-others
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues#transient-fault-error-messages-40197–40613-and-others
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues
https://docs.microsoft.com/en-us/azure/azure-sql/database/troubleshoot-common-errors-issues


116  Chapter 2  ■  Relational Databases in Azure

Many of these activities can be done through either the GUI or a T-SQL script that is 
written and executed in SSMS’s Query Editor.

You can download the latest edition of SSMS at https://docs 
.microsoft.com/en-us/sql/ssms/download-sql-server- 
management-studio-ssms?view=sql-server-ver15#download-ssms.

After opening SSMS, you will be prompted to connect to a database server. Connections 
to Azure SQL Database and Azure SQL MI will use the endpoint created for the server. This 
can be found in the Overview page listed next to Server Name for Azure SQL Database and 
Host for Azure SQL MI. Once you have entered the server name, you will need to choose 
which type of authentication you will be using and enter the credentials. Remember that 
if you are logging in with a user that does not have access to the master database, you will 
need to specify the database you are connecting to in the Connection Properties.

Once connected, users can begin writing queries by clicking New Query in the top ribbon. 
This will open a new page in the Query Editor, with results being displayed at the bottom 
of the Query Editor after a query is run. SSMS also enables users to script out any object in 
a database by right-clicking on them in the Object Explorer, hovering the mouse over Script 
<object> as, and choosing one of the “script as” options. Figure 2.19 illustrates an example 
of how to script out an ALTER VIEW statement for an existing database view in SSMS. This 
example opens the script in a new Query Editor window.

F IGURE 2 .19   Script View as ALTER To statement

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15#download-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15#download-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15#download-ssms


Management Tasks for Relational Databases in Azure  117

There are several administrative features that are native to SSMS, including the ability 
to optimize a query based on its execution plan. An execution plan is a graphical interpre-
tation of the steps the database engine’s query optimizer takes to execute a query. It is read 
right to left and displays metrics for each step, including the operation that was performed. 
SSMS will also display resource usage for a step if you hover your mouse over it. Figure 2.20 
illustrates an example of an execution plan and includes the pop-up infographic for one of 
the steps.

Azure Data Studio
Azure Data Studio is an open-source database management tool that can be used on a Win-
dows, macOS, or Linux machine. Like SSMS, it can connect to SQL Server, Azure SQL, 
and Azure Synapse Analytics dedicated SQL pools. Azure Data Studio provides a modern 
developer experience with features such as IntelliSense, source control integration, and an 
integrated terminal. Not only does it display results for queries, but it also comes with built-
in charting to allow users to visualize trends and data skew.

You can download the latest edition of Azure Data Studio at https://
docs.microsoft.com/en-us/sql/azure-data-studio/download-
azure-data-studio?view=sql-server-ver15.

F IGURE 2 .20   SSMS execution plan

https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/azure-data-studio/download-azure-data-studio?view=sql-server-ver15


118  Chapter 2  ■  Relational Databases in Azure

Once it’s launched, you can connect to a database with Azure Data Studio by clicking 
New Connection. This will open a new window to the right where you can add the server 
name, authentication type, and credentials. There is also an option to change the database 
from <Default> to a user database if you are logging in with a database contained user.

After you click Connect, Azure Data Studio will display the type (e.g., Azure SQL Data-
base, Azure SQL MI, etc.), SQL Server version, and the databases that are hosted on the 
server. Users can then choose New Query or New Notebook to begin developing code. 
Clicking New Query opens a query window that provides a similar experience to the SSMS 
Query Editor. Clicking New Notebook opens a Jupyter Notebook that allows users to write 
queries using SQL, Python, Julia, R, Scala, and PowerShell code.

Sqlcmd
Sqlcmd is a command-line utility that can be used to connect and query databases hosted 
in SQL Server, Azure SQL, and Azure Synapse Analytics dedicated SQL pools. The utility 
allows users to enter T-SQL statements or run script files through a command prompt. It 
includes several built-in switches that can be used for tasks such as authenticating to a data-
base, running a query from a file, and configuring what information is returned with a query. 
Some of the most common sqlcmd switches are listed in Table 2.8.

TABLE 2 .8   Common sqlcmd switches

Switch Definition

-d Database Name

-E Use Trusted Connection

-g Enable Column Encryption

-G Use AAD Authentication

-i Input File

-K Set Application Intent (useful for read-only workloads)

-l Login Timeout

-m Error Level

-N Encrypt Connection

-o Output File

-P Password

-S Server Name



Query Techniques for SQL  119

You can download the latest edition of sqlcmd at https://docs 
.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql- 
server-ver15#download-the-latest-version-of-sqlcmd- 
utility.

To use sqlcmd, open a command prompt and type sqlcmd followed by the server 
information and authentication details. The following is an example of a sqlcmd command 
connecting to an Azure SQL Database:

sqlcmd -S <server_name>.database.windows.net 
-d <database_name> -U <user_name> -P <password>

Running a query from the command prompt with sqlcmd can be easily performed by 
entering the sqlcmd command followed by the query. The following is an example of a 
query in sqlcmd that returns every row in a table:

sqlcmd
USE <database_name>;
GO
SELECT * FROM <table_name>;
GO

Query Techniques for SQL
As mentioned in Chapter 1, SQL is the development language used to build, access, and 
manipulate relational databases. The American National Standards Institute (ANSI) and 
the International Organization for Standardization (ISO) recognizes SQL as a standard lan-
guage. While ANSI SQL is the standard that all major relational database vendors adhere 
to, most of them extend the language with functionality custom to their relational database 
products. For example, T-SQL is the Microsoft extension of ANSI SQL that is native to SQL 
Server, Azure SQL, Azure SQL Database, Azure SQL MI, and Azure Synapse Analytics.

Switch Definition

-t Query Timeout

-U Username

-V Error Severity Level

-z New Password

-Z New Password and exit

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15#download-the-latest-version-of-sqlcmd-utility
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15#download-the-latest-version-of-sqlcmd-utility
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15#download-the-latest-version-of-sqlcmd-utility
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15#download-the-latest-version-of-sqlcmd-utility


120  Chapter 2  ■  Relational Databases in Azure

DDL vs. DML Commands
Standard ANSI SQL commands can be broken down into two primary categories: Data 
Definition Language (DDL) and Data Manipulation Language (DML). DDL commands are 
used to define relational database objects such as databases, tables, views, stored procedures, 
and triggers. DML commands are used to manipulate data stored in a relational database. 
The following sections describe common commands and statement structure used by these 
categories.

Chapter 1 describes two additional SQL categories with DDL and DML 
commands that are specific to T-SQL. These include Data Control Lan-
guage (DCL) commands that can be used to manage permissions and 
Transaction Control Language (TCL) commands that are used to control 
transaction execution.

Data Definition Language (DDL)
DDL statements are used to define database objects. They can be used to create new objects, 
modify existing ones, or remove objects that are no longer required. DDL statements start 
with a command that indicates which of these actions the statement is performing. Table 2.9 
includes a list of these commands and the common statement structures associated with 
each of them.

TABLE 2 .9   DDL commands

Command Description Statement Structure

CREATE Create a new object in a database. CREATE TABLE <table name>
(
<list of columns>
)

ALTER Modify the structure of an existing  
database object.

ALTER TABLE <table name>
ADD COLUMN <column name>

DROP Remove an object from a database. DROP TABLE <table name>

RENAME Rename an existing object. EXEC sp_rename <old name>, 
<new name>

TRUNCATE Remove all rows from a table. TRUNCATE TABLE <table name>



Query Techniques for SQL  121

SQL Server and Azure SQL do not have a RENAME command. Instead, 
user-defined objects can be renamed using the sp_rename system 
stored procedure.

Along with the database objects, DDL statements can also define what type of data can 
be stored in object columns. Data types specify the type of data a column can store, which 
also defines what kind of actions can be performed on that column. For example, columns 
defined as numeric data types can be aggregated in ways that a string data type cannot. 
Table 2.10 includes a list of some of the most popular SQL data types and their descriptions.

Data types are not the only way DDL commands can define table data. Constraints are 
used in conjunction with data types to limit the type of data that can be stored in a column. 
If a statement inserting or updating data violates the constraint, then the action is immedi-
ately canceled. Table 2.11 includes a list of some of the most used constraints.

TABLE 2 .10   Common SQL data types

Data Type Description

INT Used to define numeric data that rounds to a whole number.

DECIMAL(p, s) Used to define numeric data that has fixed precision (p) and scale (s).

FLOAT(n) Used to define numeric data that has approximate, or floating, decimal 
places.

BIT Used to define numeric data that can take a value of 1, 0, or NULL.

DATE Used to define a date.

DATETIME Used to define a date that is combined with a time of day.

VARCHAR(n) Used to define string data that has variable size. n is used to define the 
number of characters that can be stored.

NVARCHAR(n) Unicode version of the VARCHAR(n) data type. The storage size is two times 
the number of characters.

CHAR(n) Used to define string data that has a fixed size. n is used to define the 
number of characters that can be stored.

NCHAR(n) Unicode version of the CHAR(n) data type. The storage size is two times the 
number of characters.



122  Chapter 2  ■  Relational Databases in Azure

Now that we have discussed DDL commands, data types, and constraints, let’s explore 
how these can be used to construct a DDL statement. The following statement creates a table 
called DimProductCategory.

CREATE TABLE [dbo].[DimProductCategory](
.....[ProductCategoryKey] [int] IDENTITY(1,1) NOT NULL,
.....[ProductCategoryAlternateKey] [int] NULL,
.....[EnglishProductCategoryName] [nvarchar](50) NOT NULL,
.....[SpanishProductCategoryName] [nvarchar](50) NOT NULL,
.....[FrenchProductCategoryName] [nvarchar](50) NOT NULL,
CONSTRAINT [PK_DimProductCategory_ProductCategoryKey] PRIMARY KEY CLUSTERED
(
.....[ProductCategoryKey] ASC
)ON [PRIMARY],
CONSTRAINT [AK_DimProductCategory_ProductCategoryAlternateKey]
 UNIQUE NONCLUSTERED
(
.....[ProductCategoryAlternateKey] ASC
)ON [PRIMARY]
)
GO

TABLE 2 .11   Common SQL constraints

Command Description

NOT NULL Ensures that a column has a value for every row.

UNIQUE Ensures that all values in a column are different.

PRIMARY 
KEY

Uniquely identifies each row in a table. Also uses NOT NULL and UNIQUE con-
straints to ensure there are unique values for every row.

FOREIGN 
KEY

Used to create relationships with other tables. Prevents any action from 
breaking a relationship.

CHECK Used to specify what data values are acceptable in one or more columns.

DEFAULT Sets a default value for a column if a value is not specified when new data is 
inserted.

INDEXES Used to enhance the performance of queries. Depending on the index type, 
they can physically order data in an object or provide pointers to the physical 
location of data.



Query Techniques for SQL  123

The statement begins by declaring that it is going to create a new table in the database. 
Columns, their data types, and constraints are then defined between the open and close 
parentheses. Indexes defined in the table statement also include the columns on which they 
are based and the ascending or descending sort direction for the column.

Note that the ProductCategoryKey column definition also includes the IDENTITY key 
word. This property is used to ensure that primary key or unique constraint columns have 
unique values generated for every new row that is inserted. Unless this property is turned off 
by using the SET IDENTITY_INSERT ON command at the beginning of a transaction, iden-
tity columns do not allow user modifications. Instead, values for identity columns are gen-
erated based on the seed and increment arguments defined in the CREATE TABLE statement. 
For example, the first row inserted in the DimProductCategory table will generate  
the value 1 in the ProductCategoryKey column since the seed argument is set to 1. The  
second argument represents the incremental value that is added to the previous row that  
was loaded. In this case, the second row inserted will generate the value 2 in the  
ProductCategoryKey column since the increment value is set to 1 and the first row’s Product-
CategoryKey column equals 1.

Data Manipulation Language (DML)
DML statements are used to manipulate data stored in a database. They can be used to 
retrieve and aggregate data for analysis, insert new rows, or edit existing rows. Table 2.12 
lists the four main DML commands and the common statement structures associated with 
each of them.

TABLE 2 .12   DML commands

Command Description Statement Structure

SELECT Read rows from a table or 
view

SELECT
<list of columns>
FROM
<table name>
WHERE <filter condition>
GROUP BY <group by expression>
HAVING <search condition>
ORDER BY <columns to sort by>

INSERT Insert new rows into a 
table

INSERT INTO <table name>
(
<list of columns>
)
VALUES
(
<values to insert>
)



124  Chapter 2  ■  Relational Databases in Azure

Select statements are often more sophisticated than the example structure illustrated 
in Table 2.12. Queries can retrieve data from multiple tables, convert column data types, 
and perform aggregations. The UNION, EXCEPT, and INTERSECT operators can also be 
used to combine or contrast results from multiple queries into one result set. There will be 
more sophisticated query examples in the following sections, but it is important to note 
that processing order of operations in a select statement does not match the order they are 
written. This order, also known as the logical processing order, determines when the results 
from one step are made available to subsequent steps. The logical processing order is defined 
as follows:

1.	 FROM

2.	 ON

3.	 JOIN

4.	 WHERE

5.	 GROUP BY

6.	 WITH CUBE or WITH ROLLUP

7.	 HAVING

8.	 SELECT

9.	 DISTINCT

10.	 ORDER BY

11.	 TOP

More information on the structure of a T-SQL select statement can be found at 
https://docs.microsoft.com/en-US/sql/t-sql/queries/select-transact-
sql?view=sql-server-ver15.

Command Description Statement Structure

UPDATE Update existing rows UPDATE <table name>
SET <column> = <new value>
WHERE <filter condition>

DELETE Remove existing rows DELETE FROM <table name>
WHERE <filter condition>

TABLE 2 .12   DML commands  (continued)

https://docs.microsoft.com/en-US/sql/t-sql/queries/select-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-US/sql/t-sql/queries/select-transact-sql?view=sql-server-ver15


Query Techniques for SQL  125

Query Relational Data in Azure SQL, MySQL, MariaDB, 
and PostgreSQL
While most RDBMSs implementations of SQL use the same core functionality, there are 
some subtle differences. The following sections explore the syntax used to query data in 
Azure SQL, Azure Database for MySQL, Azure Database for MariaDB, and Azure Database 
for PostgreSQL and highlights some of the key differences.

Querying Azure SQL with T-SQL
The first set of queries discussed are constructed using T-SQL. As mentioned previously, 
T-SQL is the Microsoft extension of ANSI SQL used to communicate with a SQL Server–
based relational database. All the examples in this section can be used to query tables in the 
AdventureWorksDW2019 database. Use the following link to download a backup of the 
database: https://docs.microsoft.com/en-us/sql/samples/adventureworks-
install-configure?view=sql-server-ver15&tabs=ssms#download-backup-
files. The link also provides instructions on how to restore the database to an instance of 
SQL Server or Azure SQL.

Retrieving data from a relational database all starts with a select command. The following 
is an example of a select statement that returns all data from every column in a single table:

SELECT *
FROM [dbo].[FactInternetSales]

The asterisk (*) symbol is a wildcard character that indicates “all.” In this case, the * is 
used to represent every column in the FactInternetSales table. While this saves users time 
when writing queries with long column lists, it can result in poor query performance by 
returning more data than what is required. Also, applications that use SELECT * statements 
are liable to break when new columns are added to the table or view being queried. For 
these reasons, it’s always better to explicitly list the columns needed in a select statement.

Queries are often written to return a filtered list of data. The following is an example that 
returns sales information only for products that cost more than $1,000. The result set is also 
sorted by sales amount in descending order.

SELECT ProductKey
    ,ProductStandardCost
    ,TotalProductCost
    ,SalesAmount
    ,OrderDate
FROM [dbo].[FactInternetSales]
WHERE ProductStandardCost > 1000
ORDER BY SalesAmount DESC

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files


126  Chapter 2  ■  Relational Databases in Azure

Rarely do applications and reports use data from only one table. Instead, applications 
querying relational databases will often build result sets from two or more tables with the 
same select statement. Queries can do this by using a join operation. Join operations leverage 
the logical relationships between tables to build rows of data with columns from different 
tables. There are different types of join operations available that can return different combi-
nations of data. The following is a list of the four most common join types and their T-SQL 
implementations:

■■ Inner joins retrieve data from both tables that meets the join condition. Inner joins can 
be defined with the INNER JOIN or JOIN expressions.

■■ Left outer joins retrieve all data from the table on the left-hand side of the join condition 
and data from the right table that meets the join condition. Left outer joins can be 
defined with the LEFT OUTER JOIN or LEFT JOIN expressions.

■■ Right outer joins retrieve all data from the table on the right-hand side of the join 
condition, and data from the left table that meets the join condition. Right outer joins 
can be defined with the RIGHT OUTER JOIN or RIGHT JOIN expressions.

■■ Full outer joins retrieve all data from both the left and right tables. Full outer joins can 
be defined with the FULL OUTER JOIN or FULL JOIN expressions.

Figure 2.21 illustrates how the different join types retrieve data from two tables (repre-
sented as table A and table B).

In addition to these join types, SQL Server–based database engines also enable users 
to develop queries using cross joins. Cross joins are special types of joins that return the 
Cartesian product of rows from both tables. Cross joins can be defined with the CROSS 
JOIN expression.

The following query builds on the previous example with added data from the  
DimProduct table. Since it uses a JOIN command without any additional adjectives, the query 

Inner Join

A B

A B

A B

A B

Left Outer Join

Right Outer Join Full Outer Join

F IGURE 2 .21   Types of SQL joins



Query Techniques for SQL  127

will perform an inner join, only returning data from both tables that meet the join condition 
defined in the ON clause.

SELECT P.EnglishProductName
     ,FIS.ProductKey
     ,FIS.ProductStandardCost
     ,FIS.TotalProductCost
     ,FIS.SalesAmount
     ,FIS.OrderDate
FROM [dbo].[FactInternetSales] AS FIS
    JOIN [dbo].[DimProduct] AS P
        ON FIS.ProductKey = P.ProductKey
WHERE ProductStandardCost > 1000
ORDER BY SalesAmount DESC

Note that the query uses the AS command in the FROM clause to give each table a short 
form alias. This alias can be used to specify which tables the selected columns are in and 
how the join condition is defined. Aliases can also be given to columns, allowing users to 
give names to columns that are the result of aggregations.

SQL provides several built-in functions that can be used to infer insights out of relational 
data. Built-in functions can be categorized based on the actions they perform on data. For 
example, aggregate functions such as SUM(), MAX(), and MIN() perform calculations on a 
set of values and return a single value. They can be used in combination with the GROUP 
BY clause to calculate aggregations on categories of rows.

The following query revises the previous one so that it returns the total quantity sold and 
the total sales dollars for products that cost more than $1,000. It also groups the sales totals 
by product name and monthly sales per year.

SELECT P.EnglishProductName
     ,SUM(FIS.OrderQuantity) AS TotalQuantity
     ,SUM(FIS.SalesAmount) AS TotalSales
     ,MONTH(FIS.OrderDate) AS [Month]
     ,YEAR(FIS.OrderDate) AS [Year]
FROM [dbo].[FactInternetSales] AS FIS
    JOIN [dbo].[DimProduct] AS P
        ON FIS.ProductKey = P.ProductKey
WHERE ProductStandardCost > 1000
      AND YEAR(FIS.OrderDate) > 2010
GROUP BY P.EnglishProductName,
         MONTH(FIS.OrderDate),
         YEAR(FIS.OrderDate)
ORDER BY [Year], TotalSales DESC



128  Chapter 2  ■  Relational Databases in Azure

You may be wondering why the WHERE and GROUP BY clauses are not using the 
column aliases that were defined at the beginning of the statement. This is due to the T-SQL 
logical processing order that was discussed previously in this chapter. Since the WHERE and 
GROUP BY clauses are processed by the database engine before the SELECT is, these clauses 
do not know how to resolve column aliases.

The final T-SQL example in this section describes how to limit the result set to the first 10 
rows the query returns. This is one key difference between T-SQL and other versions of SQL, 
as T-SQL uses the TOP command and other versions use LIMIT. We will demonstrate how 
other relational database platforms implement the LIMIT command.

SELECT TOP(10) P.EnglishProductName
     ,SUM(FIS.OrderQuantity) AS TotalQuantity
     ,SUM(FIS.SalesAmount) AS TotalSales
FROM [dbo].[FactInternetSales] AS FIS
    JOIN [dbo].[DimProduct] AS P
        ON FIS.ProductKey = P.ProductKey
WHERE ProductStandardCost > 1000
GROUP BY P.EnglishProductName
ORDER BY TotalSales DESC

Querying MySQL, MariaDB, and PostgreSQL
Queries written to interact with MySQL, MariaDB, and PostgreSQL databases are very 
similar to ones written in T-SQL. The following example is nearly identical to the previous 
T-SQL query, with one key difference.

SELECT P.EnglishProductName
     ,SUM(FIS.OrderQuantity) AS TotalQuantity
     ,SUM(FIS.SalesAmount) AS TotalSales
FROM [dbo].[FactInternetSales] AS FIS
    JOIN [dbo].[DimProduct] AS P
        ON FIS.ProductKey = P.ProductKey
WHERE ProductStandardCost > 1000
GROUP BY P.EnglishProductName
ORDER BY TotalSales DESC
LIMIT 10

The SQL dialects used by MySQL, MariaDB, and PostgreSQL do not use the TOP(n) 
command to retrieve the first n number of rows that are returned by a query. Instead, these 
dialects use the LIMIT command to limit the number of rows returned.

Keep in mind that queries written to retrieve and manipulate data stored in one of these 
database engines will need to be done from a tool that can connect to them. MySQL Work-
bench is a graphical tool that is like SSMS that can be used to connect to MySQL and  
MariaDB databases. Queries developed for PostgreSQL databases can be done using the 
graphical tool pgAdmin.



Summary  129

Summary
The “relational data on Azure” objective of the DP-900 exam focuses on building a founda-
tional understanding of common relational database workloads and database structures. It 
focuses on the different types of relational database offerings in Azure, along with deploy-
ment, security, and development considerations for them.

This chapter covered the following concepts:

Describe relational data workloads.   Relational data workloads can be split between 
transactional and analytical. Transactional, or OLTP, workloads store interactions that 
are related to an organization’s activities, such as retail purchases. Databases such as SQL 
Server and Azure SQL Database include mechanisms for managing concurrent transactions 
to maintain ACID compliancy. Unlike OLTP workloads that are focused on optimizing 
database writes, analytical workloads are optimized for read-heavy applications. Analytical 
databases are flattened for this reason, so that users reading data do not have to write overly 
complex queries to query data.

Describe relational Azure data services.   There are several relational database options on 
Azure that are designed to meet any organizational need. The Azure SQL portfolio of products 
include relational database offerings that use the Microsoft SQL Server database engine. 
These include SQL Server on Azure Virtual Machine, Azure SQL Managed Instance, and 
Azure SQL Database. Organizations needing horizontal scale for data warehouse and big 
data analytics workloads can use an Azure Synapse Analytics dedicated SQL pool. Azure 
Database for PostgreSQL, Azure Database for MariaDB, and Azure Database for MySQL 
enable organizations to offload infrastructure and management of their on-premises open-
source relational database footprint to Azure.

Describe common management tasks for relational databases in Azure.   Relational data-
bases hosted in Azure remove tedious activities associated with managing infrastructure, 
allowing organizations to spend more time on building solutions that provide valuable 
insights. However, there are still several management activities that need to be maintained by 
an administrator, such as automating environment deployments and managing security. For 
this reason, Azure provides various options for organizations to automated database deploy-
ments that are both flexible and highly scalable. Security is also provided at multiple layers 
in both Azure and in the database engine. These can be categorized by network isolation, 
access management, data encryption and obfuscation, and security management. There are 
also several tools provided by Microsoft that allow database administrators and developers 
to easily perform the activities required to maintain a highly performant relational data-
base solution.

Describe common query techniques.   The Structured Query Language, or SQL for short, 
is an ANSI/ISO-compliant development language that is used to interact with relational 
data. SQL commands can be categorized into four different types: Data Definition Lan-
guage (DDL), Data Manipulation Language (DML), Data Control Language (DCL), and 



130  Chapter 2  ■  Relational Databases in Azure

Transaction Control Language (TCL). Of these, DDL and DML statements are the most 
important to understand for the DP-900 exam. While ANSI SQL is the standard that all 
major RDBMSs use, most of them extend the language with some custom functionality. For 
example, Transact-SQL (T-SQL) is the implementation of SQL that is used by SQL Server–
based relational databases.

Exam Essentials
Identify the right data offering for a relational workload.   For this topic, be sure to know 
when to use an SMP database such as Azure SQL, a MPP database such as Azure Synapse 
Analytics dedicated SQL pools, and an OLAP tool such as Power BI. SMP databases are 
typically used for transactional workloads and smaller data warehouses. MPP databases 
are used for large analytical workloads. OLAP tools are used as data marts or the semantic 
layer for analytical workloads and include predefined aggregations that are ready to be 
reported against.

Describe relational data structures.   Be able to identify relational database structures such 
as tables, views, indexes, stored procedures, functions, and triggers. Tables are the basic 
storage object for a relational database and store elements of data as rows with one or more 
attributes stored as columns. Views are virtual objects whose contents are defined by a query 
returning data from one or more tables. Indexes optimize queries by sorting data physically 
and providing pointers to where data is stored. Stored procedures and functions encapsulate 
regularly used T-SQL code to minimize the code footprint needed for applications. Triggers 
are code blocks that are executed in response to DML, DDL, or login-based events.

Describe IaaS and PaaS Azure SQL services.   Azure has multiple options for hosting 
relational databases with different levels of abstraction and administrative effort. Of these 
options, SQL Server on Azure VMs is most like an on-premises SQL Server instance as 
it gives organizations the most control over the OS and the database engine. This is an 
example of an Infrastructure as a Service, or IaaS, offering. Organizations looking to offload 
the management of the OS and features of the database engine can take advantage of 
Platform as a Service, or PaaS, offerings such as Azure SQL Managed Instance and Azure 
SQL Database.

Describe Azure Synapse Analytics dedicated SQL pools.   Azure Synapse Analytics dedicated 
SQL pools is an MPP relational database offering in Azure that is designed for large-scale 
data warehouses. It uses a scale-out architecture that separates the computational engine and 
where data is stored so that it can efficiently process big data workloads. Data warehouse 
practitioners can choose how their data is distributed by configuring their tables to use 
hash distribution or round-robin distribution or replicating to the first distribution of each 
compute node.



Exam Essentials  131

Describe open-source options in Azure such as Azure Database for PostgreSQL, Azure 
Database for MariaDB, and Azure Database for MySQL.   Organizations can migrate 
their existing PostgreSQL, MariaDB, and MySQL footprints to Azure to offload many of 
the management requirements that are associated with an on-premises environment. Like 
Azure SQL, Azure manages common tasks such as upgrades, patches, database backups, 
high availability, and threat protection for these databases without requiring any user inter-
vention. Each of these options includes three service tiers that are designed to meet different 
performance requirements.

Describe automated deployment options for relational databases in Azure.   While orga-
nizations can manually deploy relational databases in Azure through the Azure Portal, it is 
common to use a technology such as a scripting language or an Infrastructure as Code tem-
plate to automate database deployments. Automation technologies specific to Azure include 
Azure PowerShell, Azure CLI, and ARM templates.

Describe database security components.   Security for relational databases hosted in Azure 
can be broken down into four categories: network isolation, access management, data 
encryption and obfuscation, and security management. It’s important to understand the dif-
ferent methods and technologies that are available in each of these categories. Also, be able 
to distinguish between authentication and authorization for access management.

Describe common relational database management tools.   There are several tools avail-
able for database administrators and developers to build and manage database solutions. 
The three most common tools available from Microsoft are SQL Server Management Studio 
(SSMS), Azure Data Studio, and sqlcmd.

Describe DDL and DML commands.   Standard ANSI SQL commands can be broken down 
into two categories: Data Definition Language (DDL) and Data Manipulation Language 
(DML). DDL commands refer to SQL operations used to create new objects, modify exist-
ing ones, or remove objects that are no longer required. DDL commands include CREATE, 
ALTER, and DROP. DML commands refer to SQL operations that read and write data in a 
database. DML commands include SELECT, INSERT, UPDATE, and DELETE.

Describe techniques used to query relational data in Azure SQL, Azure Database for  
PostgreSQL, and Azure Database for MySQL.   SQL is a highly flexible language that 
allows developers to perform operations that retrieve data from multiple tables in the same 
query, filter data, and perform computations on data. Different SQL dialects, such as T-SQL, 
have several built-in functions that can be used to perform calculations and manipulate data 
retrieved by a query. While most SQL dialects use the same core functionality, there are some 
subtle differences, such as the way T-SQL and other SQL dialects limit the number of rows 
returned in a query.



132  Chapter 2  ■  Relational Databases in Azure

Review Questions

1.	 Which of the following isolation levels may result in queries running into the nonrepeatable 
read issue?

A.	 Snapshot

B.	 Read Committed

C.	 Repeatable Read

D.	 Serializable

2.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “The best practice for storing data in analyt-
ical systems such as data warehouses and OLAP models is to normalize data using 2NF.”

A.	 Normalize data using 1NF

B.	 Normalize data using 3NF

C.	 De-normalize the data and use a star schema

D.	 No change necessary

3.	 You are the database administrator for a company that sells bicycles. One of the devel-
opers at the company has expressed a concern with the performance of queries that perform 
specific filters on columns that are not the primary key. Which of the following types of 
indexes should you use to increase the performance of these queries?

A.	 Nonclustered index

B.	 Clustered index

C.	 Clustered columnstore index

D.	 Filtered index

4.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “Azure SQL Managed Instance is an example 
of a PaaS solution.”

A.	 IaaS

B.	 SaaS

C.	 DbaaS

D.	 No change necessary

5.	 You are a consultant for a company that is moving many of its applications from on-premises 
infrastructure to Azure. Each database must be hosted on a database platform that requires 
the least amount of administrative effort. One of the applications has a relatively short 
migration timeline, greatly reducing the amount of time to update deprecated features or fix 



Review Questions  133

any compatibility issues. The databases serving this application run on SQL Server 2019 and 
have a few SQL Server Agent jobs. Which of the following database offerings provides the 
fastest time to Azure while maintaining the administrative requirement?

A.	 Azure SQL MI

B.	 SQL Server on Azure VM

C.	 Azure SQL Database Single Database

D.	 Azure SQL Database Elastic Pool

6.	 Which Azure virtual machine category is the recommended choice for most SQL Server 
workloads?

A.	 Compute optimized

B.	 Memory optimized

C.	 Storage optimized

D.	 General purpose

7.	 As the lead database administrator for a large retail company, you have been tasked with 
designing the HADR strategy for your SQL Server on Azure VM footprint. While every data-
base needs to be replicated to a separate server in the same region, only some databases need 
to be replicated to another server in a different region. During a planned outage, the data-
bases should immediately failover to the server in the same region. If there is a datacenter-
wide outage, then the database will need to immediately failover to the server in the other 
region. Which of the following HADR options should you recommend for this approach?

A.	 SQL Server Database Mirroring

B.	 SQL Server Always On availability groups

C.	 Azure Site Recovery

D.	 SQL Server Failover Cluster Instances

8.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “A virtual network is a networking service in 
Azure that provides network isolation for relational database services such as SQL Server on 
Azure VM and Azure SQL MI.”

A.	 Route table

B.	 Azure ExpressRoute

C.	 Network security group

D.	 No change necessary

9.	 Which of the following components are deployed with Azure SQL MI and exposed to 
the end user?

A.	 Network security group

B.	 SQL database

C.	 VNet

D.	 Virtual machine



134  Chapter 2  ■  Relational Databases in Azure

10.	 You are designing a database solution in Azure that will serve as the storage engine for 
an OLTP workload. The chosen database option will need to minimize the amount of 
administrative effort. Along with supporting several write operations, the solution will 
also be used by many analysts who will be reading data to build daily summaries of the 
data. The solution will need to route these read-only workloads so that they do not affect 
the performance of the write operations. Which of the following is the best option for 
this scenario?

A.	 Design the solution to use a SQL Server on Azure VM as the database solution. Create 
multiple virtual machines and cluster them so that they can participate in an availability 
group for HADR. Enable one of the instances to serve read-only workloads and set the 
application the analysts are using to use a read-only application intent. This will route 
their queries to the read-only secondary.

B.	 Design the solution to use Azure SQL MI as the database solution. Choose the Business 
Critical tier and set the application the analysts are using to use a read-only application 
intent. This will route their queries to the read-only secondary that is deployed with the 
Business Critical tier of Azure SQL MI.

C.	 Design the solution to use Azure SQL MI as the database solution. Choose the General 
Purpose tier and set the application the analysts are using to use a read-only application 
intent. This will route their queries to the read-only secondary that is deployed with the 
General Purpose tier of Azure SQL MI.

D.	 Design the solution to use Azure SQL Database as the database solution. Choose the 
Standard tier and set the application the analysts are using to use a read-only application 
intent. This will route their queries to the read-only secondary that is deployed with the 
Standard tier of Azure SQL Database.

11.	 What is the maximum number of user databases that can be deployed to a single 
Azure SQL MI?

A.	 1,000

B.	 50

C.	 100

D.	 500

12.	 Which of the following services allow users to attach a private IP address to an Azure SQL 
Database logical server?

A.	 VNet

B.	 Network Security Group

C.	 Private Link

D.	 Azure Firewall



Review Questions  135

13.	 You are designing a data warehouse with an Azure Synapse Analytics dedicated SQL pool 
that analysts will use to power their reporting dashboards. One of the requirements is that 
users must be able to query data without needing to write complex T-SQL code to retrieve 
data. These result sets will perform aggregations over a common set of tables. Which object 
native to dedicated SQL pools is the most performant option for this use case?

A.	 View

B.	 Materialized view

C.	 Temporary tables

D.	 Stored procedure

14.	 Azure Synapse Analytics dedicated SQL pool shards data into how many distributions when 
performing computations?

A.	 30

B.	 100

C.	 45

D.	 60

15.	 You are the lead DBA of an organization that hosts its mission-critical OLTP databases on 
Azure SQL MI. The development team for an application using one of these databases has 
requested an older copy of the database be placed on a separate Azure SQL MI to perform 
tests on data that has since been deleted. They are asking for a version that is two days older 
than the current date. Which of the following options should you use to copy the database to 
the other Azure SQL MI?

A.	 Azure Blob storage automatically stores Azure SQL MI database backups. Use a 
RESTORE FROM URL command to restore a backup of the database from two days 
ago on the second Azure SQL MI.

B.	 Azure manages backups for Azure SQL MI with automated backups. Perform a point-
in-time restore to restore a backup of the database from two days ago on the second 
Azure SQL MI.

C.	 Azure manages backups for Azure SQL MI with automated backups. Perform a point-
in-time restore to restore a backup of the database from two days ago on the first Azure 
SQL MI using a different name. Then, configure transactional replication to replicate the 
restored database from the first Azure SQL MI to the second.

D.	 Azure manages backups for Azure SQL MI with automated backups. Perform a point-
in-time restore to restore a backup of the database from two days ago on the first Azure 
SQL MI using a different name. Then, use Azure Data Synch to replicate the restored 
database from the first Azure SQL MI to the second.

16.	 The General Purpose service tier that is available for Azure SQL Database uses which pur-
chasing model?

A.	 vCore-based

B.	 DTU-based

C.	 DWU-based

D.	 DBU-based



136  Chapter 2  ■  Relational Databases in Azure

17.	 Is the italicized portion of the following statement true, or does it need to be replaced 
with one of the other fragments that appear below? “Azure Database for MySQL offers 
three deployment models, including a Hyperscale deployment model that uses a scale-out 
architecture to support large OLTP workloads.”

A.	 Azure Database for MariaDB

B.	 Azure Database for PostgreSQL

C.	 Azure Database for HBase

D.	 No change necessary

18.	 When running an Azure PowerShell script from a local machine or VM, which of the follow-
ing Azure PowerShell commands must be run at the beginning of a script to establish a con-
nection with an Azure environment?

A.	 Connect-AzSession

B.	 Connect-AzAccount

C.	 Connect-AzureRmAccount

D.	 Connect-AzureRmSession

19.	 You are designing an Azure Synapse Analytics dedicated SQL pool data warehouse that will 
be used to serve as the single source of truth for an e-commerce company. There are several 
large fact tables, each of which includes columns that are used to identify each row. These 
columns have many distinct values. Which of the following table distribution designs is most 
appropriate for these fact tables?

A.	 Round-robin

B.	 Replicated table

C.	 Hash

D.	 Broadcast

20.	 Which of the following resource provider and resource type combinations is used by Azure to 
manage the deployment of an Azure SQL Database?

A.	 Microsoft.Sql/managedInstances

B.	 Microsoft.Sql/databases

C.	 Microsoft.Sql/servers

D.	 Microsoft.Sql/servers/databases

21.	 What Azure PowerShell command can be used to create a new Azure SQL Database?

A.	 New-AzSqlDatabase

B.	 Create-AzSqlDatabase

C.	 New-AzRmSqlDatabase

D.	 Create-AzRmSqlDatabase



Review Questions  137

22.	 Which of the following RBAC roles lets a user create and manage databases without giving 
them access? Choose the option that gives the user the least number of privileges.

A.	 Azure Active Directory Administrator

B.	 SQL DB Contributor

C.	 SQL Security Manager

D.	 Contributor

23.	 You are designing an application that will be serving highly sensitive information to a web 
application. The data must be encrypted so that the only the application can decrypt the 
data, preventing database administrators from being able to view the raw values. Which 
of the following options is the best choice for encrypting the columns storing this sensitive 
information?

A.	 Dynamic Data Masking

B.	 Denying access to the columns using a DENY statement

C.	 Always Encrypted

D.	 Transparent Data Encryption

24.	 Which database management tool is most suited for performing administrative tasks such as 
managing user permissions, optimizing queries, and building HADR solutions?

A.	 Azure Data Studio

B.	 Azure PowerShell

C.	 Azure Portal

D.	 SQL Server Management Studio

25.	 You are the database administrator for a large e-commerce company. One of the developers 
is having issues connecting to one of the Azure SQL Databases you manage and has come 
to you for help. The error message in SSMS indicates a login failure and states that the user 
cannot open the “master” database. You come to learn that the developer is logging into the 
database using a database contained user. What step should you tell the developer to take to 
remediate the issue?

A.	 Change the database context on the login screen in SSMS from default to the database 
the user has access to.

B.	 Use the SQL administrator credentials to log into the logical server to access the data-
base.

C.	 Use an AAD account to log into the database.

D.	 Enable TCP/IP for the SQL instance.

26.	 Which category of SQL statements does a CREATE TABLE statement fall under?

A.	 DML

B.	 DDL

C.	 DCL

D.	 TCL



138  Chapter 2  ■  Relational Databases in Azure

27.	 What component of Azure Defender for SQL will alert users to malicious activities such as 
SQL injection and data exfiltration?

A.	 SQL auditing

B.	 Vulnerability assessment

C.	 SQL Server extended events

D.	 Advanced Threat Protection

28.	 What T-SQL statement can be used to add an Azure Active Directory user or group as a user 
for an Azure SQL Database?

A.	 CREATE EXTERNAL PROVIDER AAD; CREATE USER [<AAD_User>] FROM AAD;

B.	 CREATE USER [<AAD_User>] FROM EXTERNAL PROVIDER;

C.	 CREATE USER [<AAD_User>] FROM EXTERNAL SERVICE;

D.	 CREATE USER [<AAD_User>]

29.	 Which of the following steps comes first in the logical processing order of a T-SQL SELECT 
statement?

A.	 FROM

B.	 GROUP BY

C.	 ORDER BY

D.	 SELECT

30.	 Which of the following is a Unicode data type that is used to define string data that has var-
iable size?

A.	 VARCHAR()

B.	 NVARCHAR()

C.	 CHAR()

D.	 NCHAR()

31.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “A(n) Full Join is a join type that is used to 
retrieve data from both tables that meets the join condition.”

A.	 Full inner join

B.	 Inner join

C.	 Outer join

D.	 No change necessary



Nonrelational 
Databases in Azure

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe nonrelational data workloads.

■■ Describe the characteristics and types of NoSQL data.

■■ Recommend the correct NoSQL database.

■■ Determine when to use a NoSQL database.

✓✓ Describe nonrelational data offerings on Azure.

■■ Identify Azure data services for NoSQL workloads.

■■ Describe Azure Cosmos DB APIs.

■■ Describe Azure Table storage.

✓✓ Identify basic management tasks for nonrelational data.

■■ Describe provisioning and deployment of NoSQL 

data services.

■■ Describe method for deployment including the Azure portal, 

Azure Resource Manager templates, Azure PowerShell, and 

the Azure command-line interface (CLI).

■■ Identify data security components (e.g., firewall, authentica-

tion, encryption).

■■ Identify basic connectivity issues (e.g., accessing from on-

premises, access with Azure VNets, access from Internet, 

authentication, firewalls).

■■ Identify management tools for NoSQL databases.

Chapter 

3



Nonrelational databases, also commonly referred to as NoSQL 
databases, allow users to store and query nonrelational data 
without needing to mold it to fit a predefined schema. NoSQL 

databases are typically used in scenarios where data needs to be ingested and read very 
quickly, such as gaming, e-commerce, IoT, and mobile applications. The main categories of 
NoSQL databases are key-value, document, columnar, and graph. This chapter will discuss 
the different categories of NoSQL databases, how they can be implemented using Azure 
Cosmos DB, and basic management tasks for NoSQL databases in Azure.

Nonrelational Database Features
With the boom of data-driven applications over the last several years, organizations have 
had to reconsider how they store data. Large volumes of data coming in all shapes and sizes 
needing to be captured in near real time make it nearly impossible for organizations to use 
traditional relational models for all their data storage needs. Additionally, the advent of 
cloud computing enabled organizations to easily, and cheaply, scale their data storage solu-
tions horizontally across different geographic regions. This allows organizations to store 
data in its natural format without needing to apply complex data normalization rules first. 
For these reasons, NoSQL databases have become a popular choice for software developers 
who require a dynamic data storage solution.

Instead of forcing data to fit a rigid schema, NoSQL databases use a storage model that 
is optimized for the requirements of the data being stored. Not needing to focus so much on 
database management empowers software developers to build applications with a more agile 
approach, allowing them to adapt to changing requirements more quickly.

While there are several categories of NoSQL databases, they share the following char-
acteristics:

■■ Ambiguous implementation of ACID principles. This is a benefit for transactional work-
loads where there are high volumes of data being processed at very fast speeds.

■■ Easily scaled horizontally across multiple partitions and storage devices since there are 
no relationships between data, allowing data to reside anywhere.

■■ Schema flexibility that enables faster and more agile software development. This allows 
new data records to have different fields and data types than previously stored records. 
The flexible schema design inherent to NoSQL databases makes them ideal for semi-
structured and unstructured data.



Nonrelational Database Features  141

Generally, NoSQL databases can be categorized as either key-value stores, document 
databases, columnar databases, or graph databases. These were summarized in Chapter 1 
and are detailed in the following sections.

Key-Value Store
Key-value stores are the simplest type of NoSQL database and store pieces of data as two 
common elements: a unique key for identification and the value that is captured. Keys can be 
used by applications to perform lookup operations to retrieve the data values that are asso-
ciated with them. These data stores are highly scalable, distributing data across all available 
storage by applying a hash algorithm to the keys. While keys are unique and scalar, values 
can range from scalar values to complex data objects such as JSON arrays. Figure 3.1 is an 
example of a key-value store that stores phone directory data.

Key-value stores are optimized for ingesting large volumes of data that must be stored 
and read very quickly. Applications reading data from key-value stores typically perform 
simple lookups using a single key or a range of keys. Here are two common scenarios where 
key-value stores are ideal storage solutions:

■■ Web applications that store user session metadata in real time. These applications can also use 
key-value stores to make real-time recommendations to users as they are browsing the site.

■■ Caching frequently accessed data to optimize application performance by minimizing 
reads to disk-based storage such as Azure SQL Database.

While key-value stores are great at serving data to applications performing simple read 
operations, they are not ideal storage solutions for applications that need to perform intense 
search operations. They also do not support scenarios where queries need to filter data by 
the values. Key-value stores also only support insert and delete operations, requiring users to 
modify data by completely overwriting existing items.

Azure provides a few different options for implementing a key-value store:

■■ Azure Table storage

■■ Azure Cosmos DB Table API

■■ Azure Cache for Redis

This chapter will focus on Azure Table storage and the Azure Cosmos DB Table API as 
these are in scope for the DP-900 exam. You can find more information at https://docs.
microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview if you 
would like to learn more about Azure Cache for Redis.

Key Value

Pete {(012) 123-4567}

Kate {(654) 879-1234, (123) 456-7890}

Jim {(987) 765-4321}

F IGURE 3 .1   Key-Value store

https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview


142  Chapter 3  ■  Nonrelational Databases in Azure

Document Database
Document databases are sophisticated versions of key-value stores that store data as semi-
structured documents. Individual data fields that are contained in a document can consist 
of singleton values or a nested group of elements. Documents are assigned unique IDs that 
can be used by applications to query data. The unique ID, also known as a document key, 
is often hashed to distribute data evenly across available storage. Figure 3.2 illustrates an 
example of how a document database is structured.

While most document databases use JSON format, there are some that 
encode data in other formats, such as XML, YAML, BSON, or plain text.

Documents contain all the data for a given entity. One example of an entity could be all 
details related to an order made on an e-commerce site such as the customer’s information 
and the items ordered. This denormalized way of storing data can optimize the performance 
of queries that need to retrieve data very quickly by eliminating the need to read data from 
multiple tables.

Key

1001

1002

Document

F IGURE 3 .2   Document database



Nonrelational Database Features  143

Each document in a document database can have different sets of fields, like values in a 
key-value store. Unlike key-value stores, however, queries can filter data by field values. This 
makes document databases ideal candidates for applications that must store large amounts 
of data very quickly and need to perform sophisticated filters when querying the data.

Azure provides a couple of different options for implementing a document database:

■■ Azure Cosmos DB Core (SQL) API

■■ Azure Cosmos API for MongoDB

Columnar Database
Columnar databases are like relational databases in that they organize data into columns and 
rows. Unlike relational databases, columnar databases are completely denormalized, dividing 
data into groups known as column families. Column families contain data that would nor-
mally be separated into a set of columns if the data was stored in a relational database. How-
ever, unlike in a relational database, rows in a column family do not have to share a common 
schema. One entry can have several columns, while another might only have one or two.

Column families that are a part of the same entity share a common row key. This key is 
considered the primary key and is used to physically store data in order. Applications can 
perform lookups using a specific row key or a range of keys. Secondary indexes can also be 
applied to allow applications to filter by column values.

Figure 3.3 illustrates an example of a columnar database used by a company that sells 
bicycles and bicycle accessories. This database has two column families, one with product 
information and another listing quantity information. Related column families are bound by 
a common product key.

Columnar databases are typically used in analytics scenarios. Grouping data into column 
families allows queries to jump directly to where specific pieces of data are located. This can 
result in very fast aggregations since the query does not need to jump from row to row to 
find the field that is a part of the aggregation. Columns in a column family are also of the 
same data type, resulting in better data compression and faster queries.

Row Key

ProductKey ProductInfo Quantity Info

Column Families

500 Category: Bicycle
Subcategory: Mountain Bike
Color: Matte Black
UnitPrice: 700

Category: Helmet
Subcategory: Standard Helmet
Color: Orange
UnitPrice: 30

QuantityOnHand: 10
QuantitySold: 12
ProductRating: 8.2

QuantityOnHand: 30
QuantitySold: 40
ProductRating: 9.3

505

F IGURE 3 .3   Columnar database



144  Chapter 3  ■  Nonrelational Databases in Azure

While columnar databases are optimal for analytical workloads that aggregate data, 
they are not well-suited for transactional workloads where queries perform value-specific 
lookups. This is where a traditional relational database that stores data in a row-wise format 
is more performant. Writing data to a columnar database can also take more time than in a 
row-wise database. While new entries in a row-wise database can be inserted in one opera-
tion, columnar databases write new entries to each column one by one.

Azure provides a couple of different options for implementing a columnar database:

■■ Azure Cosmos DB Cassandra API

■■ HBase in Azure HDInsight

This chapter will focus on the Azure Cosmos DB Cassandra API. You can find more 
information at https://docs.microsoft.com/en-us/azure/hdinsight/hbase/
apache-hbase-overview if you would like to learn more about HBase in Azure 
HDInsight.

Graph Database
Graph databases are specialized databases that focus on storing the relationships between 
data entities. Entities in a graph database are stored as nodes, while the relationships bet-
ween entities are referred to as edges. Nodes and edges can contain attributes specific to 
them, like tables in a relational database. Edges can also have a direction to indicate the 
nature of a relationship between two nodes.

Applications that use graph databases run queries that need to traverse the network of 
nodes and edges, analyzing the relationships between entities. Figure 3.4 demonstrates an 
example of a graph database that stores information about an organization’s personnel 
chart. The entities represent different job titles and departments, while the edges represent 
the reporting structure for different employees.

Employee

Title: CEO

Employee

Title: Regional Director

Employee

Title: Regional Director

Employee

Title: Regional Chief of Staff

Department

Name: Head Office

Department

Name: Northeast Region

Department

Name: Southeast Region

F IGURE 3 .4   Graph database

https://docs.microsoft.com/en-us/azure/hdinsight/hbase/apache-hbase-overview
https://docs.microsoft.com/en-us/azure/hdinsight/hbase/apache-hbase-overview


Azure Cosmos DB  145

Graph databases are optimal for solutions that ask questions such as “Find all employees 
that report directly to the CEO.” Applications querying large graphs with lots of nodes and 
edges, such as social media networks, can perform complex analyses very quickly. While 
relational databases can be used to store the same data as a graph database, queries written 
for the graph database circumvent any join operations or subqueries that would need to be 
considered for the relational database.

Graph databases can be implemented in Azure using the Azure Cosmos DB Gremlin API.

Azure Cosmos DB
Azure Cosmos DB is a multi-model PaaS NoSQL database management system. Multi-
model means that organizations can use Azure Cosmos DB to build key-value, document, 
columnar, and graph data stores. The different categories are made available as database 
APIs, including the Table API, Core (SQL) API, API for MongoDB, Cassandra API, and 
Gremlin API. Users will have the option of choosing one of these APIs when deploying an 
instance of Azure Cosmos DB.

The highest level of management for Azure Cosmos DB is a database account. Currently, 
you are allowed to have up to 50 Azure Cosmos DB accounts in an Azure subscription, 
but that can be increased by submitting a support ticket in the Azure Portal. Each database 
account can have one or more databases (referred to as a keyspace when using the Azure 
Cosmos DB Cassandra API), that serve as the unit of management for a set of containers.

Containers are the fundamental unit of scalability for throughput and storage. It is at this 
level that data is partitioned and replicated across multiple regions. Users can also register 
stored procedures, user-defined functions, triggers, and merge procedures within a container. 
Containers are identified by different names depending on which type of NoSQL database is 
deployed. Table 3.1 lists the naming convention used by each Azure Cosmos DB API.

TABLE 3 .1   Azure Cosmos DB API-specific names for containers

API Container Naming Convention

Table API Table

Core (SQL) API Container

Cassandra API Table

API for MongoDB Collection

Gremlin API Graph



146  Chapter 3  ■  Nonrelational Databases in Azure

Data stored in containers is automatically grouped into logical partitions based on a 
partition key and is distributed across physical partitions. A partition key is a designated 
data field that is used to efficiently group throughput and related data. Other than choos-
ing an appropriate partition key, partition administration is handled internally by Azure 
Cosmos DB.

Individual data records stored in a database container are referred to as items. When 
Azure Cosmos DB partitions data, it groups items with the same partition key value into 
the same logical partition. Items are automatically indexed as they are added to a container. 
Indexing behavior can also be customized by configuring the indexing policy on the con-
tainer. Like containers, items are referred to by different names depending on which type 
of NoSQL database is deployed. Table 3.2 lists the naming convention used by each Azure 
Cosmos DB API.

When choosing a partition key for your container, be sure to select a field 
that has a high range of values. This will ensure that data is evenly dis-
tributed among partitions. Partition key values also cannot be updated, 
so be sure to select a column that has values that do not change.

Azure Cosmos DB ensures that data is highly available, regardless of which API is being 
used. As a matter of fact, Azure Cosmos DB guarantees 99.99 percent high availability when 
deployed to a single region and 99.999 percent high availability when deployed to mul-
tiple regions. Reads and writes are also guaranteed within 10 milliseconds across regions 
wherever the data is being replicated to. The following sections focus on how to optimize 
performance and availability for Azure Cosmos DB before finishing with an overview of the 
different database APIs.

High Availability
High availability is a foundational component of Azure Cosmos DB. Global distribution in 
Azure Cosmos DB allows users to easily replicate data to multiple regions by associating 

TABLE 3 .2   Azure Cosmos DB API-specific names for items

API Item Naming Convention

Table API Entity

Core (SQL) API Item

Cassandra API Row

API for MongoDB Document

Gremlin API Node or edge



Azure Cosmos DB  147

one or more additional regions to an Azure Cosmos DB account. Adding new regions can be 
done through the Azure Portal or programmatically.

New regions can be configured to be read-only or to allow both reads and writes. Read-
only workloads such as those produced from reporting applications can be offloaded to the 
read-only replicas, resulting in better performance for these workloads and those performing 
write operations. It is recommended to configure at least two different regions to allow writes 
in case of regional failure. This guarantees that if the primary region goes down, then  
write operations will automatically be routed to another region.

In addition to global distribution, Azure Cosmos DB maintains four replicas of the data 
within each region. For example, if you define an Azure Cosmos DB account to use two 
regions, then eight copies of the data will be maintained. Data resiliency within regions 
can also be guaranteed by enabling availability zone support. Availability zones ensure 
that replicas are placed in different zones of a given region, protecting data from in-region 
zonal failures.

Consistency Levels
Distributed databases such as Azure Cosmos DB that manage multiple write copies across 
different regions requires a trade-off between data consistency, availability, and performance. 
Using a strong consistency model results in the most updated data being read by applications 
but can result in slower performance since data has to replicate and be committed to each 
associated region before an application is allowed to read data. While eventual consistency 
offers better performance, applications reading data are at risk of returning dirty data.

Azure Cosmos DB offers five well-defined consistency levels to balance the trade-off bet-
ween consistency, availability, and performance. The following list describes each consistency 
level, starting with the strictest level of consistency and finishing with the most relaxed:

■■ Strong—This consistency level guarantees that reads return the most recent version of 
data, regardless of what region an application is reading data from. There is a possibility 
of slower performance as application connections may experience delays until transac-
tions are committed across every associated region.

■■ Bounded staleness—With this consistency level, applications reading data from the same 
region that it was written to use strong consistency. For applications reading data from 
regions outside of where data was written, there is a set “staleness window” for data. 
This means that data is committed asynchronously to other associated regions in the 
Azure Cosmos DB account. The staleness window can be configured one of two ways:

■■ The number of versions of a record

■■ A set time interval between writes

Whenever either of these two limits is reached, connections are paused, and data is 
committed to the outside regions. Bounded staleness is a good choice for applications 
that require low write latency and guaranteed local consistency.

■■ Session—This is the most widely used consistency level for single region and glob-
ally distributed accounts. It grants a session token to the application writing data and 



148  Chapter 3  ■  Nonrelational Databases in Azure

guarantees that it and any other application sharing the same session token see the most 
recent version of data. All other reads use eventual consistency.

■■ Consistent prefix—Data is eventually replicated across regions but this level does not 
provide any guarantees on how long it will take for data to be replicated. However, it 
does guarantee that applications reading data will read data in order. For example, if an 
application writes records 100, 101, and 102 to a database in that order, then an appli-
cation reading the data will see either 100, [100, 101], [101, 102] or [100, 101, 102], 
but never out-of-order combinations like [100, 102].

■■ Eventual—Much like the consistent prefix consistency level, eventual consistency guar-
antees that data will eventually be replicated across regions but does not provide any 
guarantees on how long it will take for data to be replicated. There is also no guarantee 
that data will not be replicated out of order. While it is the most performant consistency 
level in terms of read and write latency, it is the least likely to guarantee consistency.

Session consistency is the default consistency level for Azure Cosmos DB. You can change 
the consistency to be more consistent or more performant with a sliding scale in the Azure 
Portal or with a deployment script.

Request Units
As with any PaaS offering in Azure, Azure Cosmos DB abstracts compute resources from the 
end users. Instead, resources such as CPU, IOPS, and memory are bundled into units of mea-
sure called Request Units.

Request Units (RUs) represent the throughput required to read and write data in Azure 
Cosmos DB. One general rule of thumb is that the cost to read and write a 1 KB item is 
approximately 1 RU and 5 RUs respectively. This is true regardless of what type of Azure 
Cosmos DB API you are interacting with. Of course, the number of RUs that are required 
for a given query are going to vary based on the volume of data read or written, how well 
the data is indexed, the consistency model choice, and the complexity of the query. More 
information on RU considerations can be found at https://docs.microsoft.com/en-
us/azure/cosmos-db/request-units#request-unit-considerations.

The number of RUs used by a query will vary depending on how evenly 
distributed data is across partitions. Skewed data caused by a poorly 
chosen partition key can cause queries to have to perform cross-partition 
searches, which can take significantly more time and throughput than a 
query interacting with a single partition.

Since RU usage is measured per second, throughput is set using the Request Units per 
second (RU/s) measurement. The way throughput is charged depends on the way the RU/s 
measurement is configured on the Azure Cosmos DB account. These include provisioned 
throughput, autoscale, and serverless.

https://docs.microsoft.com/en-us/azure/cosmos-db/request-units#request-unit-considerations
https://docs.microsoft.com/en-us/azure/cosmos-db/request-units#request-unit-considerations


Azure Cosmos DB  149

Provisioned
Azure Cosmos DB allows users to manually increase or decrease the number of RU/s. 
With this option, users can allocate RU/s at the database level and at the container level 
through the Azure Portal or programmatically using the .NET or Java SDK. The minimum 
throughput that can be allocated for a container or database is 400 RU/s.

Provisioned throughput on an Azure Cosmos DB database is shared across all the con-
tainers in the database. This means that all containers share the compute resources that are 
allocated to a database. There is also an option to dedicate throughput to specific containers. 
For example, let’s say that you create a database with five containers and one of these con-
tainers requires dedicated throughput. When provisioning this container, you can enable the 
Provision dedicated throughput for your container option to explicitly allocate RU/s to the 
container. The rest of the containers will share the throughput allocated to the database.

There are a couple of caveats regarding the 400 RU/s minimum for provisioned 
throughput. The actual minimum is typically the maximum of the following:

■■ 400 RU/s

■■ 10 RU/s per every 1 GB added to storage

■■ The highest number of RU/s previously provisioned divided by 100

For example, if 50 GB of data is added to a new container, then the minimum RU/s for 
that container is 500 RU/s.

Provisioned throughput is difficult to calculate when first deploying a database. It’s 
important to understand how much data you will be storing, how many containers you will 
need, and what type of queries will be interacting with the database. A helpful tool for esti-
mating throughput and throughput cost can be found at https://cosmos.azure.com/
capacitycalculator. The calculator uses parameters such as the number of regions, 
whether there are additional write regions, the volume of data stored, and the number of cre-
ate, read, and delete operations per second to estimate the number of RU/s needed and how 
much the workload will cost.

Autoscale
Autoscale is a version of provisioned throughput that grants Azure Cosmos DB the ability to 
automatically scale the throughput of a database or container. Once it’s enabled, users can 
set the maximum number of RU/s that a database or container can scale to. Throughput is 
then scaled based on usage without impacting the performance of any existing workloads.

Typical use cases for autoscale include workloads with inconsistent or infrequent usage 
and new applications where the user is not sure how much throughput to provision. Auto-
scale is a simple, cost-effective solution for most workloads, while still providing high 
availability.

Serverless
Serverless mode does not require users to provision throughput when creating databases or 
containers in Azure Cosmos DB. Instead, the Azure Cosmos DB manages throughput for 

https://cosmos.azure.com/capacitycalculator/
https://cosmos.azure.com/capacitycalculator/


150  Chapter 3  ■  Nonrelational Databases in Azure

workloads and bills users at the end of their billing period for the number of RU/s that were 
consumed during that period.

Scenarios that are best suited for serverless include those where you expect unpredict-
able workload traffic with long periods of downtime. These include development, test, and 
prototyping scenarios with unknown traffic patterns and applications that have highly 
random activity.

Provisioned throughput, autoscale, and serverless are available for all 
five Azure Cosmos DB APIs.

Azure Cosmos DB APIs
Azure Cosmos DB offers multiple database APIs to create different types of NoSQL data-
bases, including the following options:

■■ Table API for key-value stores

■■ Core (SQL) API for document databases

■■ API for MongoDB for document databases

■■ Cassandra API for columnar databases

■■ Gremlin API for graph databases

Users are asked to select an API when creating an Azure Cosmos DB account for the first 
time. Choosing the most appropriate API depends entirely on the solution(s) that instance of 
Azure Cosmos DB will be supporting. The following sections will discuss each API and when 
to use them.

Table API
The Azure Cosmos DB Table API is a key-value store that is based on Azure Table storage. 
The differences are primarily focused on features that are inherent to the Azure Cosmos DB 
service such as higher performance and availability, global distribution, automatic secondary 
indexes, and more options for configuring throughput. However, it is important to know the 
core components of Azure Table storage to understand how to implement a key-value store 
with the Azure Cosmos DB Table API.

Azure Table storage is a key-value store that stores nonrelational, structured data. Con-
tainers in Azure Table storage are represented as tables and can be created in an Azure 
storage account. Data is stored in tables as a collection of entities, like rows in a relational 
database. Individual data fields in entities are represented as properties. Properties are like 
columns in a relational database.

While the terminology may present Azure Table storage as a relational data store, it is far 
from it. Tables do not enforce a schema on entities, allowing entities to have different sets 
of properties. However, there are some entity conditions that must be adhered to. First, each 
entity must include a set of system properties that specify a partition key, a row key, and a 



Azure Cosmos DB  151

time stamp. Second, there is also a 255-property limit that includes the three previously men-
tioned system properties.

Partition keys uniquely identify each partition in a table. Row keys 
uniquely identify each entity in a partition. Together, the two keys form 
primary keys that uniquely identify each entity in a table.

Typical use cases for Azure Table storage include caching user data for web applications, 
address books, device information, or other types of metadata. Applications written in .NET, 
Java, Python, Node.js, or Go can interact with Azure Table storage using the Azure SDK for 
those languages. Data can be accessed using OData for all languages and LINQ queries for 
applications written in .NET.

The Table storage service in Azure is moving from Azure Storage to Azure Cosmos DB 
to overcome existing limitations with latency, scaling, throughput, availability, and query 
performance. Keep in mind that Azure Cosmos DB Table API and Azure Table storage share 
the same data model as Azure Table storage and expose the same query operations through 
their SDKs. For this reason, applications written for Azure Table storage can easily migrate 
to the Azure Cosmos DB Table API with minimum code changes.

Table 3.3 includes a list of some of the primary benefits that can be gained by migrating 
to the Azure Cosmos DB Table API from Azure Table storage.

More benefits can be found at https://docs.microsoft.com/en-us/azure/ 
cosmos-db/table/introduction#table-offerings.

TABLE 3 .3   Azure Table storage vs. Azure Cosmos DB Table API

Feature Azure Table Storage Azure Cosmos DB Table API

Maximum 
Entity Size

1 MB 2 MB

Latency Fast, but no upper bounds on 
latency.

Less than 10 ms latency for reads and writes 
at the 99th percentile, anywhere in the world.

Throughput Variable throughput model. Highly scalable with provisioned, autoscale, 
and serverless throughput options.

Global Distri-
bution

Single region and one 
optional secondary read 
region.

Support for multi-region writes and reads 
with automatic and manual failovers at any-
time, anywhere in the world.

Consistency Strong within the primary 
region and eventual in the 
secondary.

Five well-defined consistency levels.

https://docs.microsoft.com/en-us/azure/cosmos-db/table/introduction#table-offerings
https://docs.microsoft.com/en-us/azure/cosmos-db/table/introduction#table-offerings


152  Chapter 3  ■  Nonrelational Databases in Azure

Core (SQL) API
The Azure Cosmos DB Core (SQL) API is a document database service and is the default 
API for Azure Cosmos DB. As the name implies, the Core (SQL) API is the core, or native, 
API for working with NoSQL data in Azure Cosmos DB. This API is recommended for new 
applications that require high performance and global distribution and when migrating to 
Azure from other NoSQL database platforms. The Core (SQL) API is also the recommended 
migration option for relational databases that require the benefits of a NoSQL database.

The data model for the Core (SQL) API uses the default hierarchy of resources where an 
account hosts one or more databases, a database hosts a set of containers, and a container 
stores data as items. Items are formatted as JSON documents and can be interacted with 
using SQL.

SQL syntax used by the Core (SQL) API is very familiar to T-SQL with some additional 
functionality that is specialized for interacting with JSON data. For example, an application 
that is querying the Persons container of a database in an Azure Cosmos DB Core (SQL) 
API account might want to retrieve information about the user stored in the following 
JSON document:

{
    "firstname": "John",
    "lastname": "Smith",
    "age": 23,
    "favoriteSports": {
        "mostFavorite": "Basketball",
        "secondFavorite": "Baseball"
    },
    "id": "de5760d6-64fd-4dc3-8cb9-cc914ee860b0",
}

The application can use the following SQL query to return the user’s first name and their 
most favorite sport:

SELECT p.firstname, p.favoriteSports.mostFavorite
FROM Persons AS p
WHERE p.id = 'de5760d6-64fd-4dc3-8cb9-cc914ee860b0'

The results from the query are:

[
    {
        "firstname": "John",
        "mostFavorite": "Basketball"
    }
]

Along with SQL, the Core (SQL) API supports user-defined functions and stored proce-
dures written in JavaScript.



Azure Cosmos DB  153

API for MongoDB
MongoDB is a popular document database platform that stores data items as Binary 
JSON (BSON) documents. Organizations wanting to take advantage of the scalability, 
performance, high availability, and ease of maintenance that Azure Cosmos DB provides 
without changing any existing code can do so by migrating their MongoDB databases to the 
Azure Cosmos DB API for MongoDB.

Data can be migrated to the API for MongoDB using tools such as mongodump, 
mongorestore, or the Azure native Azure Database Migration Service. Once the data is in 
Azure, organizations can continue using their existing MongoDB applications by just chang-
ing the connection string. Tools that are native to MongoDB such as the MongoDB shell and 
MongoDB Compass can interact with databases hosted on the API for MongoDB just as 
they would with MongoDB hosted in an on-premises datacenter.

MongoDB uses a proprietary query language to perform read and write 
operations. Syntax and examples of queries written in the MongoDB Query 
Language can be found at https://docs.mongodb.com/manual/crud.

The Azure Cosmos DB API for MongoDB is compatible with MongoDB server versions  
4.0, 3.6, and 3.2. More information about migrating to the Azure Cosmos DB API for 
MongoDB and estimating throughput can be found at https://docs.microsoft.com/
en-us/azure/cosmos-db/mongodb/mongodb-introduction.

Cassandra API
Apache Cassandra is a popular columnar database that stores large volumes of data using  
a column-oriented schema. Just as with MongoDB and the Azure Cosmos DB API for  
MongoDB, organizations can migrate their existing Cassandra workloads to the Azure Cosmos 
DB Cassandra API to take advantage of the premium capabilities that Azure Cosmos DB provides.

Users can query data stored in the Cassandra API using the Cassandra Query Language 
(CQL) and tools like the CQL shell (cqlsh). Applications can also continue to use existing 
Cassandra client drivers to interact with Cassandra databases hosted on the Cassandra API.

Gremlin API
The Azure Cosmos DB Gremlin API uses the Apache Tinkerpop graph framework to provide 
a graph database interface in Azure Cosmos DB. It allows organizations to manage exist-
ing and new graph database applications without needing to worry about overhead such as 
infrastructure, throughput, and availability.

While data is stored as JSON documents as they are with the Core (SQL) API, the 
Gremlin API enables the data to be queried with graph queries. Applications can query 
databases hosted on the Gremlin API using the Gremlin query language. More information 
on the Gremlin query language and using it to query data stored in the Azure Cosmos DB 
Gremlin API can be found at https://docs.microsoft.com/en-us/azure/cosmos-
db/graph/tutorial-query-graph.

https://docs.mongodb.com/manual/crud/
https://docs.microsoft.com/en-us/azure/cosmos-db/mongodb/mongodb-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/mongodb/mongodb-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/tutorial-query-graph
https://docs.microsoft.com/en-us/azure/cosmos-db/graph/tutorial-query-graph


154  Chapter 3  ■  Nonrelational Databases in Azure

Management Tasks for 
Azure Cosmos DB
Just as with relational PaaS databases in Azure, there are several management tasks that 
must be taken into consideration for Azure Cosmos DB. These include deploying instances 
of Azure Cosmos DB, configuring throughput and global distribution, migrating existing on-
premises workloads to Azure Cosmos DB, and maintaining data security. The following sec-
tions will discuss these tasks in detail, as well as how to troubleshoot common connectivity 
issues when using Azure Cosmos DB.

Deployment Options
Instances of Azure Cosmos DB can be deployed to an Azure subscription using several 
methods. Users can manually configure the necessary requirements for their Azure Cosmos 
DB environment through the Azure Portal or automate the deployment with different script-
ing languages. As discussed in Chapter 2, Azure PowerShell, Azure CLI, and ARM templates 
are some of the most common ways to automate Azure resource deployments. Let’s discuss 
in the following sections how to use these different options to configure and deploy Azure 
Cosmos DB.

Azure Portal
Use the following steps to create an Azure Cosmos DB account through the Azure Portal:

1.	 Log into portal.azure.com and search for Azure Cosmos DB in the search bar at 
the top of the page. Click Azure Cosmos DB to go to the Azure Cosmos DB page in the 
Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure Cosmos 
DB account.

3.	 The first requirement for creating an Azure Cosmos DB account is to select the most 
appropriate API for the workload it will be serving. The Select API Option page allows 
you to choose from one of the five APIs. Figure 3.5 is a screen shot of what this page 
looks like. For the purposes of this example, we will select the Core (SQL) API.

4.	 The Create Azure Cosmos DB Account page includes six tabs with different config-
uration options to tailor the Azure Cosmos DB account to fit your needs. Let’s start 
by exploring the options available in the Basics tab. Along with the following list that 
describes each option, you can view a completed example of this tab in Figure 3.6.

a.	 Choose the subscription and resource group that will contain the Azure Cosmos DB 
account. You can create a new resource group on this page if you have not already 
created one.

b.	 Enter a name for the Azure Cosmos DB account.

http://portal.azure.com


Management Tasks for Azure Cosmos DB  155

c.	 Choose the primary Azure region for the account.

d.	 Choose whether you want to provision throughput for Azure Cosmos DB or have 
Azure Cosmos DB manage throughput with serverless.

e.	 The last option allows you to choose whether you would like to apply the free tier 
discount to this Azure Cosmos DB account. This allows you to get the first 1000 
RU/s and 25 GB of storage for free in the account. This option can be enabled for 
one account per subscription.

5.	 The Global Distribution tab allows you to enable geo-redundancy, multi-region writes, 
and availability zones for the account. These options can also be configured post-
deployment.

F IGURE 3 .5   Select Azure Cosmos DB API.

F IGURE 3 .6   Create an Azure Cosmos DB Account: Basics tab.



156  Chapter 3  ■  Nonrelational Databases in Azure

6.	 The Networking tab allows you to configure network access and connectivity for your 
Azure Cosmos DB account. There are three options to choose from for network configu-
ration: All networks, Public endpoint (selected network), and Private endpoint.

a.	 All networks opens access to the account to applications from any network. This 
option removes network isolation as a data security component to the Azure 
Cosmos DB configuration.

b.	 Public endpoint (selected network) configures Azure Cosmos DB to use a firewall 
to only allow access from certain IP addresses. This includes access from the Azure 
Portal, the IP address of the machine that is creating the Azure Cosmos DB account, 
and IP addresses in one or more subnets in an Azure VNet. Figure 3.7 illustrates an 
example of this configuration.

c.	 Private endpoint attaches an IP address in an Azure VNet to the Azure Cosmos DB 
account, limiting access to applications that can communicate with the VNet. This 
option also allows you to enable access to the account from the Azure Portal and 
the IP address of the machine that is creating the Azure Cosmos DB account.

7.	 The Backup Policy tab allows you to select between a Periodic or Continuous backup 
strategy for data stored in this Azure Cosmos DB account. The Periodic setting allows 
you to set the time interval, retention rate, and zone redundancy for data backups. The 
Continuous setting will automatically back up data within 100 seconds of a change in 
the account, including those made to databases, containers, and items. Figure 3.8 illus-
trates an example of a Periodic backup policy configuration.

F IGURE 3 .7   Create an Azure Cosmos DB Account: Networking tab.



Management Tasks for Azure Cosmos DB  157

8.	 The Encryption tab allows you to choose whether data encryption uses a key that is 
generated and managed by Azure or a custom one that is stored in Azure Key Vault.

9.	 The Tags tab allows you to place a tag on the Azure Cosmos DB account for cost 
management.

10.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the instance, 
click the Create button to begin provisioning the Azure Cosmos DB account.

Configuring Databases and Containers

After your Azure Cosmos DB account is deployed, you can start adding databases and con-
tainers to store data. You can add these objects using Azure PowerShell, Azure CLI, and 
Infrastructure as Code templates. There are also SDKs available in .NET, Java, Node.js, 
Python, and Xamarin that can be used to build Azure Cosmos DB objects. For the purposes 
of the DP-900 exam, let’s focus on configuring these objects using the following steps in the 
Azure Portal:

1.	 Go to the Azure Cosmos DB page in the Azure Portal and click on the Azure Cosmos 
DB account you recently created.

2.	 In the left-side panel of the Azure Cosmos DB blade, click Data Explorer. Figure 3.9 
shows where this button is located.

3.	 Data Explorer provides a web-based interface to interact with databases, containers, 
and items in Azure Cosmos DB. The splash page shows all the objects and data in that 
account, as well as some quick links to creating new tasks such as a new database. This 
page can be seen in Figure 3.10.

4.	 To create a new database, click New Database under Common Tasks. The New Data-
base page gives you the option to provision throughput using the autoscale or manual 
options, as well as the required number of RU/s if using manual or the max database 
RU/s if using autoscale. Figure 3.11 is an example of a new database using the autoscale 
option with a maximum RU/s allocation of 4000.

F IGURE 3 .8   Create an Azure Cosmos DB Account: Backup Policy tab.



158  Chapter 3  ■  Nonrelational Databases in Azure

5.	 To create a new container for that database, you can either click the New Container 
button in the upper-left corner of the Data Explorer page or you can click the ellipsis 
next to the database name and select New Container.

6.	 The New Container page gives you several options for configuring your container. 
Along with selecting the database that will host the container, you can give the con-
tainer a name and set a partition key. This page also allows you to set whether the con-
tainer will use dedicated or shared throughput. When selected, the Provision dedicated 
throughput for this container check box will provision dedicated throughput for the 
container. Otherwise, the container will share throughput with the other containers 
hosted by the database. Figure 3.12 shows the configuration for a container that uses 
dedicated throughput.

F IGURE 3 .10   Azure Cosmos DB Data Explorer splash page

F IGURE 3 .9   Azure Cosmos DB Data Explorer button



Management Tasks for Azure Cosmos DB  159

7.	 From here you can start adding new items to the container through Data Explorer or an 
application.

It is imperative that the partition key is chosen correctly from the start 
as it cannot be changed after the container is created. The only way to 
change the partition key is to create a new container with a new partition 
key and migrate the data from the old container to the new one.

F IGURE 3 .11   New Database



160  Chapter 3  ■  Nonrelational Databases in Azure

Configuring Global Distribution

Additional regions can be added to an Azure Cosmos DB account to replicate your data for 
high availability purposes. This can be done through the Azure Portal using the following steps:

1.	 Click the Replicate Data Globally button under Settings in the left-side panel of the 
Azure Cosmos DB blade.

2.	 From this page, you can add regions by either clicking on them in the world map or 
clicking Add Region and selecting one in the drop-down list. You can also choose to add 
a new write region using the Add Region button. Figure 3.13 illustrates how to add a 
new write region replica.

F IGURE 3 .12   New Container



Management Tasks for Azure Cosmos DB  161

Configuring Consistency

The Azure Portal allows you to change the consistency level from the default session consis-
tency to another. Simply click the Default Consistency button under Settings in the left-side 
panel and choose a new default consistency level.

If you choose the bounded staleness consistency level, you will be given the option to 
configure the maximum lag time and maximum lag operations. Figure 3.14 illustrates how 
you can change the default consistency to bounded staleness through the Default Consis-
tency page.

F IGURE 3 .13   Adding a new write region replica

F IGURE 3 .14   Updating the default consistency to bounded staleness



162  Chapter 3  ■  Nonrelational Databases in Azure

Azure PowerShell
Just as with relational databases in Azure, you can use Azure PowerShell to create and man-
age all components of Azure Cosmos DB. The following PowerShell script can be run on the 
Azure Cloud Shell or a PowerShell window to create a new Azure Cosmos DB account:

<# 
Sign into your Azure environment. Not required 
if running this script in the Azure Cloud Shell
#>
Connect-AzAccount
 
<#
Set the parameters needed to create the account 
such as the resource group name, account name, 
API type, consistency level, and replica locations
#>
$resourceGroupName = "dp900cosmos001"
$accountName = "dp900cosmos001"
$apiKind = "Sql"
$consistencyLevel = "Session"
$locations = @()
$locations += New-AzCosmosDBLocationObject `
-LocationName "East US" -FailoverPriority 0 -IsZoneRedundant 0
$locations += New-AzCosmosDBLocationObject `
-LocationName "West US" -FailoverPriority 1 -IsZoneRedundant 0
 
#Create the account
New-AzCosmosDBAccount `
    -ResourceGroupName $resourceGroupName `
    -LocationObject $locations `
    -Name $accountName `
    -ApiKind $apiKind `
    -EnableAutomaticFailover: $true `
    -DefaultConsistencyLevel $consistencyLevel

This script includes a few key parameters that are used to define the account:

■■ $resourceGroupName—The resource group that the Azure Cosmos DB account is going 
to be deployed to. The resource group must already exist.

■■ $accountName—The name for the account.

■■ $apiKind—The Azure Cosmos DB API that will be used for the account.

■■ $consistencyLevel—The default consistency level for the account.



Management Tasks for Azure Cosmos DB  163

■■ $locations—The replica regions for the account. The region with FailoverPriority set 
to 0 is the write region.

Azure PowerShell can also be used to create an Azure Cosmos DB database and container. 
The following script is used to create a new database in the newly created account with 4000 
RU/s, as well as a container with 400 RU/s:

$resourceGroupName = "dp900cosmos001"
$accountName = "dp900cosmos001"
$databaseName = "dp900cosmosdb01"
$containerName = "dp900cosmoscontainer01"
$partitionKey = "/Id"
$databaseThroughput = 4000
$containerThroughput = 400
 
New-AzCosmosDBSqlDatabase `
    -ResourceGroupName $resourceGroupName `
    -AccountName $accountName `
    -Name $databaseName `
    -Throughput $databaseThroughput
 
New-AzCosmosDBSqlContainer `
    -ResourceGroupName $resourceGroupName `
    -AccountName $accountName `
    -DatabaseName $databaseName `
    -Name $containerName `
    -PartitionKeyKind Hash `
    -PartitionKeyPath $partitionKeyPath `
    -Throughput $containerThroughput

More information about creating and managing Azure Cosmos DB objects with Azure 
PowerShell can be found at https://docs.microsoft.com/en-us/azure/cosmos-db/
sql/manage-with-powershell.

Azure CLI
Azure CLI is an alternative to Azure PowerShell for creating and managing Azure Cosmos 
DB components via a scripting language. The following Azure CLI script can be run on the 
Azure Cloud Shell, in a PowerShell window, or in a command prompt to create a new Azure 
Cosmos DB account, database, and container. This script uses the same parameters as the 
Azure PowerShell script in the previous section:

resourceGroupName='dp900cosmos001'
accountName='dp900cosmos001'
databaseName='dp900cosmosdb01'

https://docs.microsoft.com/en-us/azure/cosmos-db/sql/manage-with-powershell
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/manage-with-powershell


164  Chapter 3  ■  Nonrelational Databases in Azure

containerName='dp900cosmoscontainer01'
partitionKey='/Id'
dbThroughput=4000
containerThroughput=400
 
az cosmosdb create \
    -n $accountName \
    -g $resourceGroupName \
    --default-consistency-level Session \
    --locations regionName='West US 2' \
        failoverPriority=0 isZoneRedundant=False \
    --locations regionName='East US 2' 
        failoverPriority=1 isZoneRedundant=False \
 
az cosmosdb sql database create \
    -a $accountName \
    -g $resourceGroupName \
    -n $databaseName \
    --throughput $dbThroughput
 
az cosmosdb sql container create \
    -a $accountName -g $resourceGroupName \
    -d $databaseName -n $containerName \
    -p $partitionKey --throughput $containerThroughput

More information about creating and managing Azure Cosmos DB objects with Azure 
CLI can be found at https://docs.microsoft.com/en-us/azure/cosmos-db/sql/
manage-with-cli.

ARM Template
As mentioned in Chapter 2, ARM templates can be used to define the resources and config-
uration requirements for Azure deployments. These templates can be used to automate new 
deployments of Azure Cosmos DB as well as configuration changes for Azure Cosmos DB in 
different development environments.

One example of an ARM template that creates an Azure Cosmos DB account, database, 
and container can be found at https://docs.microsoft.com/en-us/azure/ 
cosmos-db/sql/quick-create-template?tabs=CLI. The script can be deployed by 
clicking the Deploy To Azure button in the link and entering the required parameters or by 
running the following Azure PowerShell script:

Connect-AzAccount
$resourceGroupName = "dp900cosmos001"

https://docs.microsoft.com/en-us/azure/cosmos-db/sql/manage-with-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/manage-with-cli
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/quick-create-template?tabs=CLI
https://docs.microsoft.com/en-us/azure/cosmos-db/sql/quick-create-template?tabs=CLI


Management Tasks for Azure Cosmos DB  165

$location = "East US"
 
New-AzResourceGroup 
    -Name $resourceGroupName
    -Location $location
 
New-AzResourceGroupDeployment 
    -ResourceGroupName $resourceGroupName `
    -TemplateUri https://raw.githubusercontent.com/Azure
/azure-quickstart-templates/master/quickstarts
/microsoft.documentdb/cosmosdb-sql/azuredeploy.json

Azure Cosmos DB Security
Data security for Azure Cosmos DB is implemented at multiple levels in Azure. Just as with data 
stored in a relational database in Azure, unauthorized access to Azure Cosmos DB is prevented 
using network isolation and identity management. Data stored in Azure Cosmos DB is also 
encrypted at rest and in transit to protect data from malicious activity. The following sections 
examine the methods Azure uses to secure data stored in Azure Cosmos DB in further detail.

Network Isolation
We briefly examined the two network isolation options for Azure Cosmos DB while going 
over how to deploy an account using the Azure Portal. These options include the following:

■■ Using the Azure Cosmos DB firewall to set IP-based access controls that restrict commu-
nication to an approved set of IP addresses. This can be taken a step further by allowing 
access for entire subnets by enabling the Azure Cosmos DB service endpoint on them.

■■ Assigning a private IP address from a VNet Azure Cosmos DB account with a private 
endpoint. This will restrict access to only applications that can communicate with the 
VNet that the private endpoint is associated with.

While there is an option to open Azure Cosmos DB access to requests from any network, 
it is important to consider the security implications, if any, of that setting. Rarely are security 
requirements satisfied with just access management and data encryption methods being put 
in place. Network isolation is an important design consideration and should be discussed 
when building a data-driven solution that uses Azure Cosmos DB.

Access Management
Azure Cosmos DB provides three approaches to control data access: key-based access con-
trol, role-based access control (RBAC), and resource tokens. Not only do each of these 
options restrict access to only users who should have access, they also determine whether the 
user has read-write or read-only access to database objects. The following sections provide 
an overview of these options.



166  Chapter 3  ■  Nonrelational Databases in Azure

Key-Based Access Control

Azure Cosmos DB provides a primary and a secondary key for read-write access as well as 
a primary and a secondary key for read-only access. Keys provide access to all resources in 
an Azure Cosmos DB account. The purpose of having a primary and a secondary key is to 
allow users to regenerate one key without requiring any downtime.

While keys can be useful when providing access to different applications, they can be 
cumbersome to manage. Keys also expose more Azure Cosmos DB account objects than 
what most users need. In most cases, it is better practice to use an identity management 
model that grants fine-grained permissions to Azure Active Directory (AAD) or native Azure 
Cosmos DB identities for database authentication and authorization.

Role-Based Access Control (RBAC)

Azure enables organizations to centralize identity management with AAD and RBAC roles. 
As discussed in Chapter 2, RBAC roles are used to control access to different Azure services. 
RBAC roles can be assigned to AAD objects (known as identities) such as users, groups, 
service principals, and managed identities, giving them the ability to perform tasks that are 
allowed by those roles. There are several RBAC roles specific to Azure Cosmos DB that can 
be used to perform management and data manipulation operations.

First, let’s examine Azure Cosmos DB RBAC roles that control management plane opera-
tions. These roles allow AAD identities to manage create/replace/delete operations for Azure 
Cosmos DB account objects, database backups and restores, and performance monitoring. 
The following are the Azure Cosmos DB RBAC roles that support management operations:

■■ The DocumentDB Account Contributor role can manage Azure Cosmos DB accounts.

■■ The CosmosDB Account Reader role can read Azure Cosmos DB account data.

■■ The Cosmos Backup Operator role can submit a restore request for a periodic-backup-
enabled database or container. It can modify the backup interval and retention through 
the Azure Portal. This role cannot access any data or use Data Explorer.

■■ The CosmosRestoreOperator role can perform a restore for an Azure Cosmos DB 
account using the continuous backup mode.

■■ The Cosmos DB Operator role can provision Azure Cosmos DB accounts, databases, 
and containers. It cannot access any data or use Data Explorer.

More information about Azure Cosmos DB RBAC roles that support management activ-
ities can be found at https://docs.microsoft.com/en-us/azure/cosmos-db/role-
based-access-control.

The next set of Azure Cosmos DB RBAC roles to bear in mind are those that support 
data plane operations. These allow AAD identities to create, read, update, and delete data 
from databases and containers. The following are the two built-in Azure Cosmos DB RBAC 
roles used to manage data plane operations:

■■ The Cosmos DB Built-in Data Reader role can read account metadata, data from 
specific items (point-reads and queries) and a specific container’s change feed.

■■ The Cosmos DB Built-in Data Contributor role can read account metadata and perform 
create, read, and delete operations on data in specific containers and items.

https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control
https://docs.microsoft.com/en-us/azure/cosmos-db/role-based-access-control


Management Tasks for Azure Cosmos DB  167

More information about Azure Cosmos DB RBAC roles that support management activ-
ities can be found at https://docs.microsoft.com/en-us/azure/cosmos-db/how-
to-setup-rbac.

Resource Tokens

Resource tokens allow limited time access to Azure Cosmos DB resources such as containers, 
partition keys, items, stored procedures, triggers, and user-defined functions. These tokens 
are initially created when a user is granted permissions to a specific resource and are valid 
for a preset time limit. The default time limit for a resource token is one hour and can be 
extended to a maximum of five hours. Resource tokens are re-created when a user makes an 
API request (GET, PUT, or POST) to Azure Cosmos DB.

Azure Cosmos DB database users are identity constructs that provide permissions to 
specific objects in a database, much like database contained users in Azure SQL. Users can 
be granted different levels of access to database resources using a set of permissions, also 
known as a permission resource. Permissions are authorization tokens associated with a 
database user that are used to authorize access to different database resources. Permission 
resources offer the following levels of access for database resources:

■■ All—This mode provides read, write, and delete access to a resource.

■■ Read—This mode provides read-only access to a resource.

Data Encryption
Data encryption at rest and in transit is provided out of the box for Azure Cosmos DB. 
There are no controls to turn encryption on or off. Azure Cosmos DB supports data encryp-
tion in transit with TLS version 1.2 or higher. Data stored in Azure Cosmos DB is encrypted 
at rest with keys that are managed behind the scenes by Microsoft. Organizations also have 
the option to add a second layer of encryption with their own keys.

Azure Cosmos DB Common Connectivity Issues
As with any data storage service, there will be times when issues occur when interacting with 
Azure Cosmos DB. These issues are typically related to bad request exceptions, unauthorized 
requests, or forbidden exceptions. The following sections include common Azure Cosmos 
DB connectivity issues and how to troubleshoot them.

Bad Request Exceptions
Errors that return the HTTP 400 status code represent bad request exceptions where the 
application request contains invalid data or is missing required parameters. These errors are 
typically caused by the following issues:

■■ The missing the ID property error means that the JSON item that is being inserted is 
missing the required ID property. Specify the ID property with a string value as a part of 
the item to resolve this issue.

https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-rbac
https://docs.microsoft.com/en-us/azure/cosmos-db/how-to-setup-rbac


168  Chapter 3  ■  Nonrelational Databases in Azure

■■ The invalid partition key type error means that the partition key value is an invalid data 
type. Make sure the partition key is a string or a numeric value.

■■ The wrong partition key value error means the partition key value being passed in the 
request does not match the item value in the container. For example, if the partition key 
path is /Id, the item has a field called Id and has values that do not include the value that 
was provided in the query. To resolve this issue, make sure the value used in the query is 
a valid partition key value.

Unauthorized Requests
Unauthorized requests are represented by a 401 HTTP error code, happening when an appli-
cation request is performing an action with an invalid key. The following is a list of potential 
causes for unauthorized requests:

■■ The key is regenerated and the application using the key does not follow best practices 
for key rotation. This issue can be resolved by rotating the primary key to the secondary 
key and then regenerating the primary key. More information on key regeneration and 
rotation can be found at https://docs.microsoft.com/en-us/azure/cosmos-
db/secure-access-to-data?tabs=using-primary-key#key-rotation.

■■ The key is misconfigured or was not copied correctly. Simply recopy the primary key or 
rotate to the secondary key to resolve this issue.

■■ The application is using a read-only key when trying to perform write operations. 
Switch the key to a read-write key if the application should be authorized to create or 
delete data.

■■ The application is trying to access a container before the container has finished being 
created. This typically happens when a container is deleted and then re-created with the 
same name.

Forbidden Exceptions
Forbidden exceptions occur when a data plane request comes from an application whose IP 
address is not whitelisted by the Azure Cosmos DB firewall or cannot communicate with the 
VNet the Azure Cosmos DB account is associated with. These exceptions are represented by 
403 status codes.

Solutions to this error depend on if the application request comes from an IP address that 
can communicate with the Azure Cosmos DB account. They will also depend on what type 
of network isolation the account is using. Use the following recommendations if the applica-
tion request is coming from an expected path:

■■ If the Azure Cosmos DB account is using the firewall, check to make sure the request’s 
IP address is whitelisted in the Azure Cosmos firewall or is coming from a subnet with 
the Azure Cosmos DB service endpoint enabled.

■■ If the Azure Cosmos DB account is using a private endpoint, then make sure that the 
request’s IP address can communicate with the VNet the private endpoint is asso-
ciated with.

https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data?tabs=using-primary-key#key-rotation
https://docs.microsoft.com/en-us/azure/cosmos-db/secure-access-to-data?tabs=using-primary-key#key-rotation


Management Tasks for Azure Cosmos DB  169

If the application request is not coming from an expected path, the issue is likely related 
to the application-side configuration. Use the following guidance to troubleshoot the issue 
depending on the type of network isolation the account is using:

■■ If an application request was expected to use a service endpoint but uses the public 
Internet instead, then check to see if the subnet the application’s IP address is in has 
enabled the Azure Cosmos DB service endpoint.

■■ If an application request was expected to come through a private endpoint but 
instead comes from the public Internet, then check to see if the DNS the application 
is using can resolve the account endpoint to the private IP address associated with the 
private endpoint.

Management Tools
Azure offers two Azure Cosmos DB management tools that developers can use to write and 
test queries before adding them to applications. Data Explorer and the Azure Cosmos DB 
Explorer give developers and administrators the ability to create new resources and manage 
existing resources as well as optimize the cost-performance ratio for throughput. The follow-
ing sections describe each of these tools in further detail.

Data Explorer
Data Explorer is a development environment available in the Azure Portal for querying and 
managing Azure Cosmos DB. It can be used to create and delete resources such as databases, 
containers, stored procedures, user-defined functions, and triggers. Developers can use query 
windows, like those in SSMS and Azure Data Studio, to write SQL statements that read, 
write, or delete data.

Developers using the Azure Cosmos DB Core (SQL) API can create  
Jupyter notebooks in Data Explorer to analyze and visualize data. Notebook  
commands can be written in Python or C#.

Administrators can also take advantage of Data Explorer to manage Azure Cosmos DB. 
Tasks such as scaling throughput, modifying the indexing policy, and setting a Time to Live 
(TTL) period can be handled using Data Explorer.

Azure Cosmos DB Explorer
Azure Cosmos DB Explorer is a full screen extension of the Data Explorer tool. It offers 
the same capabilities, such as creating new account objects, authoring queries, and scaling 
throughput. However, unlike Data Explorer, Azure Cosmos DB Explorer can be used outside 
of the Azure Portal. Users connecting to an Azure Cosmos DB account will only need one of 
the read-write or read-only keys that are generated with the account. This allows administra-
tors to restrict who can modify data while still providing an easy-to-use development envi-
ronment for developers to use.



170  Chapter 3  ■  Nonrelational Databases in Azure

Use the following steps to open the Azure Cosmos DB Explorer from the Azure Portal:

1.	 Go to the Azure Cosmos DB account created earlier and click on Data Explorer.

2.	 Click the Open Full Screen icon on the far right side of the Data Explorer blade. 
Figure 3.15 shows where you can find this icon.

3.	 After clicking this icon, you will be presented with two URL options: Read and Write 
and Read Only. You can either copy one of the links or click the Open button to open 
Azure Cosmos DB Explorer in a separate browser tab. Figure 3.16 illustrates what this 
pop-up page looks like.

4.	 Once Azure Cosmos DB Explorer is opened, you will see the same interface as the 
Data Explorer.

Summary
This chapter covered NoSQL databases, including key-value, document, columnar, and 
graph databases. While they specialize in different scenarios, they do share some common 
characteristics. These include ambiguous implementations of ACID principles, flexible 
schema design, and the ability to scale horizontally.

Azure Cosmos DB is a fully managed, highly available PaaS NoSQL database that offers 
multiple database APIs for each type of NoSQL data store, including the Azure Cosmos DB 

F IGURE 3 .16   Azure Cosmos DB Explorer pop-up screen

F IGURE 3 .15   Azure Cosmos DB Explorer Open Full Screen icon



Exam Essentials  171

Table API, Azure Cosmos DB Core (SQL) API, Azure Cosmos DB API for MongoDB, Azure 
Cosmos DB Cassandra API, and Azure Cosmos DB Gremlin API. Each of these APIs comes 
with at least a 99.99 percent SLA and can easily be replicated to different regions all around 
the world. Azure Cosmos DB allows users to choose from five different consistency models 
to balance the trade-off between consistency, availability, and performance.

Compute is measured in Azure Cosmos DB as the throughput required to read and write 
data. Throughput is represented as Request Units per second (RU/s). RU/s can be set at 
the database and the container level by either provisioning a dedicated number of RU/s or 
setting a maximum number of RU/s that a database or container can scale to. There is also a 
serverless option that lets Azure Cosmos DB use as many RU/s as it needs for a workload.

Just like relational databases in Azure, Azure Cosmos DB can be deployed manually in 
the Azure Portal or automated with a script or an Infrastructure as Code template. Data 
stored in Cosmos DB is also secured at multiple layers, natively encrypting data at rest and 
in transit and offering flexible network isolation and access management options.

This chapter finishes by providing an overview of the two primary management tools 
that can be used to administer and query Azure Cosmos DB: Data Explorer and the Azure 
Cosmos DB Explorer. Data Explorer can be accessed in the Azure Portal. Azure Cosmos 
DB Explorer is a stand-alone web application that provides the same options and interface 
as Data Explorer and is typically used by developers who do not have access to the Azure 
Portal.

Exam Essentials
Describe the characteristics of NoSQL databases.  NoSQL databases have become increas-
ingly popular in the last several years due to larger volumes of data being produced at faster 
speeds. The advent of agile development standards and decreasing storage cost has also led 
to software developers being more empowered to use database platforms that offer more 
dynamic storage options.

The common characteristics between the different NoSQL database categories include 
schema flexibility, ambiguous interpretations of ACID principles, and the ability to scale hor-
izontally.

Describe key-value stores.  Key-value stores are the simplest type of NoSQL database. Each 
entry includes a data value and a unique key. These data stores are optimized for ingest-
ing large volumes of data that must be stored and read very quickly Azure provides several 
options to implement a key-value store, including Azure Table storage, Azure Cosmos DB 
Table API, and Azure Cache for Redis.

Describe document databases.  Document databases are like key-value stores in that each 
entry includes a unique key with values of data. There are two options available for imple-
menting a document database in Azure: Azure Cosmos DB Core (SQL) API and Azure 
Cosmos API for MongoDB.



172  Chapter 3  ■  Nonrelational Databases in Azure

Describe columnar databases.  Columnar databases organize data in rows and columns like 
a relational database, but group columns into column families so that data remains denor-
malized. There are two options available for implementing a columnar database in Azure: 
Azure Cosmos DB Cassandra API and HBase in Azure HDInsight.

Describe graph databases.  Graph databases are specialized databases that are used to store 
the relationships between different entities. Graph databases can be implemented in Azure 
using the Azure Cosmos DB Gremlin API.

Describe Azure Cosmos DB.  Azure Cosmos DB is a PaaS NoSQL database in Azure that 
can be used to build key-value, document, columnar, and graph data stores. It is highly resil-
ient, providing users with the ability to replicate data globally.

The highest level of management in Azure Cosmos DB is an account. One account can have 
one or more databases, which serve as the unit of management for a set of containers. Con-
tainers are the most fundamental unit of scalability in Azure Cosmos DB, storing database 
objects such as user-defined functions, stored procedures, and data. Data is referred to as 
items and is distributed into multiple partitions by running a hash algorithm on a selected 
partition key.

Describe Azure Cosmos DB consistency levels.  Users can customize the trade-off bet-
ween read consistency and performance by choosing one of five consistency levels for their 
Azure Cosmos DB accounts: strong, bounded staleness, session, consistent prefix, or even-
tual. Session is the default consistency level for Azure Cosmos DB and is suitable for most 
workloads.

Describe Azure Cosmos DB throughput.  Request Units (RUs) represent the throughput 
required to read and write data in Azure Cosmos DB. Since RU usage is measured per sec-
ond, throughput is set using the Request Units per second (RU/s) measurement.

Users can allocate a dedicated number of RU/s at the database level and at the container 
level or provide a maximum number of RU/s that Azure Cosmos DB can automatically scale 
to. They can also choose to forgo provisioning throughput and use serverless to enable Azure 
Cosmos DB to manage RU/s usage without user intervention.

Describe Azure Cosmos DB APIs.  There are five APIs in Azure Cosmos DB that allow users 
to build key-value, document, columnar, and graph data stores in Azure. They include the 
Azure Cosmos DB API, Azure Cosmos DB Core (SQL) API, Azure Cosmos DB API for  
MongoDB, Azure Cosmos DB Cassandra API, and Azure Cosmos DB Gremlin API.

The Azure Cosmos DB Core (SQL) API is native to Azure Cosmos DB and is recommended 
for new applications that require high performance and global distribution and when 
migrating to Azure Cosmos DB from other database platforms.

Describe Azure Table storage.  Azure Table storage is a key-value store in Azure that stores 
nonrelational, structured data. Tables can be created in an Azure storage account and can 
host one or more entities of data. Remember that the partition key and row key form the 
primary key for each entity in a table.



Exam Essentials  173

Describe deployment options for Azure Cosmos DB.  It is important to understand how to 
deploy Azure Cosmos DB using the Azure Portal, Azure PowerShell, Azure CLI, and Azure 
PowerShell. Remember that you can use a free tier discount for one Azure Cosmos DB 
account per subscription where the first 1000 RU/s and 25 GB of storage are free.

The best way to manage deployments across multiple development environments is to script 
the deployment using an Infrastructure as Code template. This can be with an ARM,  
Terraform, or Bicep template.

Describe how to secure Azure Cosmos DB.  Just like relational database offerings in Azure, 
Azure Cosmos DB has multiple layers of security. Network isolation is achieved by either 
whitelisting IP addresses or VNets in the Azure Cosmos DB firewall or attaching a private 
endpoint to the account. Remember that while Azure Cosmos DB provides keys, it is more 
often better to assign RBAC roles to AAD identities or use permission resources with native 
Azure Cosmos DB users for access management.

Describe management tools for Azure Cosmos DB.  There are two management tools that 
can be used to manage account resources, develop queries, and handle administrative tasks: 
Data Explorer and Azure Cosmos DB Explorer. Data Explorer can be opened after clicking 
on the Azure Cosmos DB account in the Azure Portal. Azure Cosmos DB Explorer is a web-
based tool that offers the same capabilities as Data Explorer.



174  Chapter 3  ■  Nonrelational Databases in Azure

Review Questions
1.	 Which of the following services in Azure can be used to build a key-value store?

A.	 Azure Table storage

B.	 Azure Cosmos DB

C.	 Azure Cache for Redis

D.	 All of the above

2.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “Queries can return data that is filtered by 
keys and data fields from key-value stores.”

A.	 Document databases

B.	 Graph databases

C.	 Azure Table storage

D.	 No change necessary

3.	 What resource is the fundamental unit of scalability for throughput and storage?

A.	 Database

B.	 Item

C.	 Container

D.	 Account

4.	 Which consistency level is the default consistency level for Azure Cosmos DB?

A.	 Session

B.	 Consistent prefix

C.	 Strong

D.	 Bounded staleness

5.	 You are designing a key-value store in Azure that will be used to store user sessions for an 
e-commerce site. The chosen data store must be able to allow writes to multiple regions 
to ensure low write latency for global users. Which Azure service is the best choice for 
this solution?

A.	 Azure Table storage

B.	 Azure Cosmos DB Graph API

C.	 Azure Cosmos DB Table API

D.	 Azure Key-Value Storage



Review Questions  175

6.	 Which of the following Azure Cosmos DB APIs allows users to host document databases?

A.	 Table API

B.	 Cassandra API

C.	 Gremlin API

D.	 API for MongoDB

7.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? “The first 100 RU/s and 10 GB of storage 
used by an Azure Cosmos DB account are free if you apply the free tier discount to it.”

A.	 1000 RU/s and 25 GB of storage

B.	 500 RU/s and 10 GB of storage

C.	 2000 RU/s and 25 GB of storage

D.	 No change necessary

8.	 Which of the following options is the best way to manage Azure Cosmos DB deployments 
across multiple environments?

A.	 Azure PowerShell

B.	 Azure CLI

C.	 ARM templates

D.	 Azure Portal

9.	 What RBAC role can be used to restrict the data plane access of an Azure Active Directory 
identity to read-only?

A.	 Cosmos DB Built-in Data Contributor

B.	 CosmosDB Account Reader

C.	 Cosmos DB Built-in Data Reader

D.	 DocumentDB Built-in Data Reader

10.	 You are the administrator of an Azure Cosmos DB account that is used by an e-commerce 
application. Your manager has asked you to provide read-only access to one of the applica-
tion developers and to recommend a tool that they can use to develop and test queries that 
they are adding to the application. The developer does not have access to the Azure Portal. 
Which of the following tools should you recommend?

A.	 Azure Cosmos DB Explorer

B.	 Data Explorer

C.	 Azure Storage Explorer

D.	 Visual Studio Code





File, Object, and Data 
Lake Storage

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe nonrelational data workloads.

■■ Describe the characteristics and types of object data storage.

✓✓ Describe nonrelational data offerings on Azure.

■■ Describe the characteristics and types of Azure Storage 

including Azure Blob storage, Azure Data Lake Storage, and 

Azure File storage.

✓✓ Identify basic management tasks for nonrelational data.

■■ Describe provisioning and deployment of Azure Storage.

■■ Describe method for deployment including the Azure portal, 

Azure Resource Manager templates, Azure PowerShell, and 

the Azure command-line interface (CLI).

■■ Identify data security components (e.g., firewall, authentica-

tion, encryption).

■■ Identify basic connectivity issues (e.g., accessing from on-

premises, access with Azure VNets, access from Internet, 

authentication, firewalls).

■■ Identify management tools for Azure Storage.

Chapter 

4



The previous chapter examined nonrelational data that is 
stored in a NoSQL database. This chapter focuses on nonre-
lational data that is stored in object storage. Object storage 

services in Azure are used to store data as files. These services can be used to store binary 
data such as videos and images, to store files that are used in data processing systems, and as 
replacements for existing on-premises file servers. Knowing how these services work will not 
only help you understand object storage services in Azure but will also prepare you for the 
enterprise data lake aspect of modern analytical solutions covered in Chapter 5, “Modern 
Data Warehouse in Azure.”

File and Object Storage Features
File storage organizes and stores data as flat files in folders under a hierarchy of directories 
and subdirectories. Data is stored on a local hard drive or a network-attached storage (NAS) 
device. Shared folders that use a NAS device allow multiple users to share data with each 
other. While file storage is a good storage solution for small amounts of organized files, it is 
not ideal for large volumes of files that contain different types of data. Hierarchical folder 
structures can become bottlenecks when working with large files or unstructured data. 
Object storage can overcome many of these limitations.

Object storage is used to store large volumes of data in binary and text format. Data 
stored in object storage can be structured, semi-structured, or unstructured. These data 
stores are like shared folders on a local network except that they bundle data with custom 
metadata. APIs can use an object’s metadata to retrieve its contents. Cloud-based object data 
stores are highly scalable, allowing organizations to store exabytes worth of files. Further-
more, these systems are designed to be highly redundant to protect against hardware failures.

Object data stores are useful in the following scenarios:

■■ Storing images, videos, and audio that are analyzed by deep learning models or served 
to a website

■■ Storing raw and processed data in file formats such as Parquet, ORC, or Avro that are 
optimized for distributed computing solutions

■■ Serving as the backend storage layer for modern data warehouse scenarios that separate 
compute and storage with a scale-out architecture

■■ Capturing IoT data for long-term storage and analysis



Azure Storage  179

■■ Storing data backups for high availability

■■ Archiving data for regulatory compliance

Azure offers options for both file and object storage with the Azure Storage platform of 
services. Let’s examine the Azure Storage platform and the core storage options it offers in 
the following sections.

Azure Storage
Azure Storage is a multi-purpose PaaS storage platform that allows users to create object, 
file, key-value, and queue data stores. While the ability to host different types of data stores 
is like Azure Cosmos DB’s multi-modal implementation, it differs from Azure Cosmos DB in 
that a single Azure Storage instance can manage multiple types of data stores.

The highest level of management for Azure Storage is the storage account. Storage 
accounts serve as a container that group the core Azure Storage data services together. It is at 
this level of management that hardware performance, business continuity, network isolation, 
and data encryption are managed. Users can create one or more of the following services in 
the storage account to host their data:

■■ Azure Files can be used to create a fully managed file share in Azure. File shares cre-
ated using Azure Files are accessible via Server Message Block (SMB) and Network File 
System (NFS) protocols.

■■ Azure Blob Storage is an object data store that can be used to store exabytes worth 
of data, including unstructured data, backups, or files used for distributed processing 
solutions.

■■ Azure Data Lake Storage Gen2 is an object data store that is optimized for distributed 
analytics solutions. It adds a hierarchical namespace on top of the Azure Blob storage 
service for quick and efficient data access. This service can be enabled when creating a 
storage account.

■■ Azure Table storage is a NoSQL database that stores data as key-value pairs. Azure 
Table storage was covered in Chapter Chapter 3, “Nonrelational Databases in Azure,” 
and is being moved to the Azure Cosmos DB Table API.

■■ Azure Queue storage is used to store millions of messages and transfer them between 
different applications. The specifics of Azure Queue storage are outside of the scope 
for this book and the DP-900 exam. However, feel free to use the following link if you 
would like to learn more about Azure Queue storage: https://docs 
.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-
use-queues?tabs=dotnet.

Each of the previously mentioned storage services uses different URL endpoints for con-
nectivity. Table 4.1 lists the URL endpoint patterns used for each service.

https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues?tabs=dotnet
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues?tabs=dotnet
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues?tabs=dotnet


180  Chapter 4  ■  File, Object, and Data Lake Storage

Performance Tiers
Storage accounts can be created using one of following two performance tiers depending on 
the type of storage and hard drive speed required:

■■ Standard tier storage accounts support all the Azure Storage suite of services and is 
recommended for most scenarios. This tier uses standard hard disk drives (HDDs) for 
storage. Azure Files created on a standard storage account only support SMB file shares.

■■ Premium tier storage accounts support Azure Files, Azure Blob storage, and Azure Data 
Lake Storage Gen2 (ADLS). This tier uses solid-state drives (SSDs) for storage. Storage 
accounts using this tier are typically used in scenarios with high data transaction rates or 
that require consistently low latency. Azure Files created on a premium storage account 
support both SMB and NFS file shares.

Standard storage accounts can be categorized as general-purpose v1 or 
general-purpose v2. General-purpose v1 is a legacy category and is not 
recommended for any file or object storage scenario. General-purpose 
v2 storage accounts support the latest Azure Storage features. For the 
purposes of the DP-900 exam, this book will focus on general-purpose v2 
storage accounts when referencing the standard performance tier.

TABLE 4 .1   Storage service URL endpoint patterns

Storage Service URL Pattern

Azure Files https://<storage-account-name>.file.core 
.windows.net/

Azure Blob storage https://<storage-account-name>.blob.core 
.windows.net/

Azure Data Lake Storage Gen2 https://<storage-account-name>.dfs.core 
.windows.net/

Azure Table storage https://<storage-account-name>.table.core 
.windows.net/

Azure Queue storage https://<storage-account-name>.queue.core 
.windows.net/

http://queue.core.windows.net
http://queue.core.windows.net


Azure Storage  181

Data Redundancy
Azure Storage maintains HADR by storing multiple copies of the data in the same region, 
and optionally across different regions. This ensures that data is protected from planned and 
unplanned downtime. Azure Storage offers the following four options for replicating data:

■■ Locally redundant storage (LRS) creates three copies of the data in a single datacenter. 
LRS protects data from server rack and driver failures but does not protect against 
datacenter-wide failures such as a natural disaster.

Write operations are performed synchronously and will only return successfully once the 
data is replicated to all three copies.

■■ Zone-redundant storage (ZRS) replicates the data to three different availability zones 
in the same region. ZRS is recommended for solutions that require high availability, as 
each availability zone is a separate physical location. For example, ZRS protects against 
datacenter-wide power outages since data is replicated to other datacenters in the 
same region.

As with LRS, write operations are performed synchronously and will only return suc-
cessfully once the changes have finished replicating to all three availability zones.

■■ Geo-redundant storage (GRS) creates three copies of the data in a single datacenter 
using LRS. It then creates an additional three copies of data in a secondary region to 
protect against regionwide failures such as natural disasters.

Write operations are first committed synchronously in the primary region. Once that is 
completed, the changes are replicated asynchronously to the secondary region. These 
changes are then copied synchronously between the three copies in the secondary loca-
tion using LRS.

■■ Geo-zone-redundant storage (GZRS) replicates the data to three different availability 
zones in the same region using ZRS. It then creates an additional three copies of 
data in a secondary region using LRS. GZRS is recommended for solutions requiring 
maximum HADR.

Storage accounts using GRS or GZRS can also be configured to offload read-only work-
loads to the secondary region. This is known as read-access geo-redundant storage (RA-
GRS) and read-access geo-zone-redundant storage (RA-GZRS). Applications can take 
advantage of read access to the secondary region by using the secondary URL endpoint.  
This endpoint simply appends the suffix -secondary to the storage account name in the  
primary URL endpoint (for example, https://myaccount-secondary.blob.core 
.windows.net).

There are some limitations to the level of redundancy that is supported by different 
storage account types. Table 4.2 lists the redundancy options that are supported by each type 
of storage account.

https://myaccount-secondary.blob.core.windows.net
https://myaccount-secondary.blob.core.windows.net


182  Chapter 4  ■  File, Object, and Data Lake Storage

Azure Files does not support RA-GRS or RA-GZRS.

The different types of blobs mentioned in Table 4.2 will be detailed later in this chapter in 
the section “Azure Blob Storage.” For now, it is important to understand that replicating data 
to secondary regions using GRS, RA-GRS, GZRS, and RA-GZRS is only supported by stan-
dard storage accounts.

Deploying through the Azure Portal
Storage accounts can be easily deployed through the Azure Portal. Once an account is 
deployed, users will be able to use it to create the storage service needed for their solution. 
Use the following steps to create an Azure storage account through the Azure Portal:

1.	 Log into portal.azure.com and search for Storage accounts in the search bar at 
the top of the page. Click Storage Accounts to go to the storage accounts page in the 
Azure Portal.

2.	 Click Create to start choosing the configuration options for your storage account.

3.	 The Create a Storage Account page includes six tabs with different configuration 
options to tailor the storage account to fit your needs. Let’s start by exploring the 
options available in the Basics tab. Along with the following list that describes each 
option, you can view a completed example of this tab in Figure 4.1.

a.	 Choose the subscription and resource group that will contain the storage account. 
You can create a new resource group on this page if you have not already 
created one.

b.	 Enter a name for the storage account.

TABLE 4 .2   Storage account redundancy options

Storage 
Account Type Supported Storage Services Redundancy Options

Standard Blob storage, ADLS, queue storage, 
table storage, and Azure Files

LRS, ZRS, GRS, GZRS, RA-GRS, 
and RA-GZRS

Premium block 
blobs

Blob storage and ADLS LRS and ZRS

Premium file 
shares

Azure Files LRS and ZRS

Premium page 
blobs

Page blobs LRS

http://portal.azure.com


Azure Storage  183

c.	 Choose the primary Azure region for the storage account.

d.	 Choose the performance tier for the storage account. If you choose premium, you 
will be asked to choose from the following three account types: block blobs, file 
shares, and page blobs. This example will continue with the standard tier.

e.	 Choose the type of redundancy you want the storage account to have. If you choose 
GRS or GZRS, you will be given the option to enable read access.

4.	 The Advanced tab allows you to enable specific security and storage settings. The fol-
lowing describes the configurable settings in this tab.

a.	 The first set of configuration options relate to security. They include enabling or 
disabling secure transfer for REST API operations, infrastructure encryption, anony-
mous public access for blob storage, access via account keys, Azure Active Directory 
authorization, and the minimum TLS version. We will use the default configuration 
settings for this example, as shown in Figure 4.2.

b.	 The next setting will allow you to enable the hierarchical namespace for ADLS. We 
will cover when to enable this setting later in this chapter in the section “Azure Data 
Lake Storage Gen2,” but for now understand that this option should be enabled if 
the storage account will be used to store data used by distributed analytics work-
loads. It’s important to note that this setting cannot be changed once the storage 
account is deployed.

F IGURE 4 .1   Create a Storage Account: Basics tab.



184  Chapter 4  ■  File, Object, and Data Lake Storage

c.	 The next set of configuration options are specific to the storage services that will 
be available in the storage account. An important setting to consider here is the 
access tier you would like to configure for the storage account. This will depend on 
whether the account will be accessed frequently (Hot) or infrequently (Cool).

d.	 The last setting to consider on this page is related to Azure Files. If you will be cre-
ating an Azure file share in the account, you will need to consider how large the 
file share will be. While the standard storage limit is 5 TB, enabling the large files 
setting will increase the limit to 100 TB. Figure 4.3 illustrates an example of the 
advanced storage settings with the default options.

5.	 The Networking tab allows you to configure network access and connectivity for 
your storage account. There are three options to choose from for network config-
uration: Public endpoint (all networks), Public endpoint (selected networks), and 
Private endpoint.

a.	 Public endpoint (all networks) opens access to the account to applications from 
any network. This option removes network isolation as a data security component 
to the storage account configuration. Figure 4.4 illustrates an example of the Net-
working tab with this option enabled.

b.	 Public endpoint (select networks) allows access to specific subnets in a 
selected VNet.

c.	 Private endpoint allows you to attach a private IP address from a VNet to 
the storage account, limiting access to applications that can communicate 
with the VNet.

F IGURE 4 .2   Create a Storage Account: Advanced tab security configurations.



Azure Storage  185

F IGURE 4 .3   Create a Storage Account: Advanced tab storage configurations.

F IGURE 4 .4   Create a Storage Account: Networking tab.



186  Chapter 4  ■  File, Object, and Data Lake Storage

6.	 The Data Protection tab allows you to protect data from accidental deletes or modi-
fications, enable version management, and set time-based retention policies for blob 
versions. Figure 4.5 illustrates an example of the data protection settings with the 
default options.

7.	 The Tags tab allows you to place a tag on the storage account for cost management.

8.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the instance, 
click the Create button to begin provisioning the storage account.

F IGURE 4 .5   Create a Storage Account: Data Protection tab.



Azure Storage  187

Azure Storage Services
The DP-900 exam covers Azure Files, Azure Blob storage, ADLS, and Azure Table storage. 
Because Azure Table storage was covered in Chapter 3, the following sections will focus on 
Azure Files, Azure Blob storage, and ADLS.

Azure Files
Azure Files is a storage service that allows organizations to build fully managed file shares in 
Azure. File shares deployed through Azure Files can be accessed using the SMB protocol on 
standard and premium storage accounts or the NFS protocol on premium storage accounts. 
The service organizes data in a hierarchical folder structure and is typically used to replace 
or complement on-premises file shares. Along with the benefits that are native to Azure 
storage accounts such as offloading hardware management and global redundancy, data 
stored in an Azure file share can be accessed from anywhere in the world.

File shares created in Azure Files can be mounted concurrently to a VM in the cloud or 
on a user’s local machine for access. SMB file shares can be mounted to Windows, Linux, 
or macOS devices. NFS file shares are limited to Linux and macOS devices. In addition to 
being accessible as a mounted drive, SMB file shares can be synchronized between Azure 
Files and a local share on a Windows Server device using Azure File Sync. This service allows 
organizations to cache frequently accessed data on the local file share while leaving the least 
accessed data in Azure.

Access Tiers

Azure Files offers four storage tiers to meet the performance and price requirements of dif-
ferent workloads:

■■ Premium file shares use SSDs for storage, providing high performance and low latency 
for IO-intensive workloads. This tier is only available in premium storage accounts.

■■ Transaction optimized file shares use standard HDDs for storage, enabling transaction-
heavy workloads that do not need the low latency that premium file shares provide. This 
tier is available in standard storage accounts.

■■ Hot file shares use standard HDDs for storage and are optimized for general-purpose 
file-sharing scenarios. This tier is available in standard storage accounts.

■■ Cool file shares use standard HDDs for storage and offer cost-efficient storage 
that is optimized for archive storage scenarios. This tier is available in standard 
storage accounts.

The premium storage tier is the only tier that users can access via SMB and NFS proto-
cols. Transaction optimized, hot, and cool tiers are only offered in standard storage accounts 
and do not support the NFS protocol as of this writing.



188  Chapter 4  ■  File, Object, and Data Lake Storage

File shares created on a standard storage account switch between the transaction opti-
mized, hot, and cool tiers without needing to move to a different storage account. Moving 
from one of the standard storage account tiers to the premium tier will require you to create 
a new premium storage account and copy the data from the old file share to the new one. 
The data can be copied from the old share to the new one using the AzCopy utility that is 
described later in this chapter.

More information about the different storage tiers available for Azure Files can be found 
at https://docs.microsoft.com/en-us/azure/storage/files/storage-files-
planning#storage-tiers.

Creating a File Share

File shares in Azure can be created through the Azure Portal, a REST API call, an Azure 
PowerShell or Azure CLI script, or as a part of an Infrastructure as Code template. The 
Azure Files client library can be used in custom .NET, Java, C++, or Python applications 
to manipulate file shares. The following steps describe how to create a file share in the 
Azure Portal.

1.	 Navigate to the storage accounts page in the Azure Portal and click on the storage 
account that was previously created.

2.	 In the left-side panel of the storage account blade, click File shares. Figure 4.6 shows 
where this button is located.

3.	 Click the + File Share button at the top of the file shares blade to configure a new file 
share. Figure 4.7 shows what this button looks like and where at the top of the page it 
is located.

F IGURE 4 .7   Create a New File Share button.

F IGURE 4 .6   File shares button

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-planning#storage-tiers
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-planning#storage-tiers


Azure Storage  189

4.	 Enter a name and select an access tier for the new file share. Figure 4.8 illustrates a com-
pleted example of this page.

5.	 Click Create to create the file share.

Mounting a File Share

One of the biggest advantages of using an Azure file share is that they can be mounted to 
any computer in the world. However, there are some considerations that need to be made:

■■ If you are connecting via SMB, then the OS of the computer that the file share is being 
mounted to must support SMB 3.0 and higher.

■■ Ensure that TCP port 445 is open if you are connecting via SMB and using the file 
share’s public endpoint. This is the port that the SMB protocol uses for communication.

■■ As of this writing, mounting an NFS file share using its public endpoint is restricted to 
VMs inside of Azure.

Many organizations do not allow public endpoint access and block TCP port 445 for 
security reasons. In these scenarios, organizations can establish a secure network tunnel bet-
ween an Azure VNet and their on-premises network using a VPN or ExpressRoute connec-
tion. This allows them to attach a private IP address, or private endpoint, from the VNet to 
the storage account hosting the file share. Using the private endpoint allows users to access 
the file share using a secure network connection without needing to open TCP port 445. 
More information about securely accessing an Azure file share can be found at https://
docs.microsoft.com/en-us/azure/storage/files/storage-files-networking-
overview#accessing-your-azure-file-shares.

F IGURE 4 .8   New file share

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-networking-overview#accessing-your-azure-file-shares
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-networking-overview#accessing-your-azure-file-shares
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-networking-overview#accessing-your-azure-file-shares


190  Chapter 4  ■  File, Object, and Data Lake Storage

The Azure Portal provides scripts that will mount a file share to a machine using a com-
patible OS. The following steps describe how to access these scripts:

1.	 Navigate to the storage accounts page in the Azure Portal and click on the storage 
account that was previously created.

2.	 In the left-side panel of the storage account blade, click File Shares.

3.	 Click on the file share that was previously created.

4.	 Click the Connect button at the top of the page. Figure 4.9 shows what this button 
looks like and where at the top of the page it is located.

5.	 In the Connect pop-up page, choose the OS you will be mounting the file share to. This 
example will use the Windows option.

6.	 Choose the drive letter that the mounted file share will use and the authentication 
method. The example will use Z as the drive letter and Storage account key for the 
authentication method.

7.	 Copy the script provided in the pop-up window. Paste the script into a command 
prompt or PowerShell window on the host you want to mount the file share to and run 
it. If all dependencies are configured properly, then the script will mount the file share to 
the host machine. Figure 4.10 illustrates a completed example of the Connect page.

Azure File Sync

Azure File Sync allows users to use Azure Files as a highly resilient central file repository for 
their local file shares. It does this by creating a local cache of an Azure file share on one or 
more local Windows file servers. Content is synchronized between Azure Files and each of 
the local file servers, thus maintaining a consistent view of data. By enabling the cloud tiering 
feature, Azure File Sync can control how much local storage is needed for caching by allow-
ing users to only cache frequently accessed files.

To maintain synchronous copies of data between Azure Files and a local file share using 
Azure File Sync, you will first need to download and install the Azure File Sync agent to 
the local server. You will be able to map the Azure file share to folders on the local server 
with sync groups once the agent is installed. Instructions for downloading and installing 
the Azure File Sync agent, as well as setting up sync groups, can be found at https://
docs.microsoft.com/en-us/azure/storage/file-sync/file-sync-extend-
servers#install-the-agent.

Azure File Sync is only supported on Windows Server 2012 R2 and above.

F IGURE 4 .9   Connect button

https://docs.microsoft.com/en-us/azure/storage/file-sync/file-sync-extend-servers#install-the-agent
https://docs.microsoft.com/en-us/azure/storage/file-sync/file-sync-extend-servers#install-the-agent
https://docs.microsoft.com/en-us/azure/storage/file-sync/file-sync-extend-servers#install-the-agent


Azure Storage  191

Azure Blob Storage
Azure Blob Storage is a highly flexible object data storage solution in the cloud. It is designed 
to store massive amounts of data that are used in several different scenarios. The following 
list includes some common use cases for blob storage:

■■ Storing unstructured data such as videos, images, and audio

■■ Storing large amounts of data files that are used in big data solutions

■■ Storing application log files

F IGURE 4 .10   Connect page



192  Chapter 4  ■  File, Object, and Data Lake Storage

■■ Storing data backups

■■ Serving as an archive for historical data

Users can manage their Azure Blob Storage data in container objects. A container is like 
a directory in a file system and can store an unlimited amount of data. Users can create as 
many containers as they want in a single storage account, allowing them to organize data 
however they want. Containers can be accessed from anywhere in the world by appending 
the container name to the end of the Blob storage URI (for example, https://<storage-
account-name>.blob.core.windows.net/<container_name>).

Containers store individual pieces of data as blob objects. New pieces of data can be cate-
gorized as one of the following blob types when they are uploaded to Azure Blob Storage:

■■ Block blobs are optimized for storing large amounts of text and binary data. Data that 
is uploaded as a block blob is composed of block segments. A single block blob can con-
tain up to 50,000 blocks, each one identified by a unique block ID. Existing block blobs 
can be modified by inserting, replacing, or deleting blocks. A single block blob can be 
approximately 190.7 TB.

■■ Append blobs consist of blocks like block blobs but are optimized for append opera-
tions. When an append blob is modified, the additional data is appended to the end of 
the blob. Updating or deleting existing blocks is not supported. Append blobs are com-
monly used to store log files from virtual machines.

■■ Page blobs store data as a collection of 512-byte pages, with a maximum blob size of 8 
TB. They are optimized for random read and write operations. Writes to a page blob can 
overwrite up to 4 MB of pages in the blob. Random ranges of bytes can be read from 
or written to a page blob, making them ideal for storing OS and data disks for VMs 
and databases. For this reason, virtual data disks that serve Azure VMs are persisted 
as page blobs. Azure SQL Database also uses page blobs as the underlying storage for 
its databases. More information about page blobs and their uses cases can be found at 
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-
pageblob-overview?tabs=dotnet.

Access Tiers

Azure Blob Storage is regularly used to store data that is frequently and rarely accessed in 
the same storage account. In these scenarios it is critical to distinguish data that is actively 
used and data that is archived. For this reason, Azure Blob Storage offers three access tiers 
that allow users to store blob data in the most cost-effective manner based on how it is used:

■■ Hot tier is an online tier for storing data that is frequently accessed. Data that is con-
figured to use this tier is expected to be read from or written to often. This tier has the 
highest storage costs but the lowest access latency.

■■ Cool tier is an online tier for storing data that is infrequently accessed and should be 
stored for a minimum of 30 days. Typical use cases for the cool access tier include stor-
ing short-term data backups and older datasets that are not frequently accessed but need 
to be available at a moment’s notice.

http://blob.core.windows.net/<container_name
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-pageblob-overview?tabs=dotnet
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-pageblob-overview?tabs=dotnet


Azure Storage  193

■■ Archive tier is an offline tier for storing data that is almost never accessed and should be 
stored for a minimum of 180 days. This tier has the lowest storage costs but the highest 
access costs. Data stored with this access tier should have flexible latency requirements 
as retrieval can take several hours. Typical use cases for the archive tier include storing 
long-term backups, compliance data that needs to be retained for regulatory reasons, 
and raw datasets that must be retained but are never used once they are processed.

Azure Blob storage offers a rule-based life cycle management system 
that can be used to automatically move blob data from one access tier 
to another. More details about blob life cycle management can be found 
at https://docs.microsoft.com/en-us/azure/storage/blobs/
access-tiers-overview#blob-lifecycle-management.

Creating a Blob Container

Just like any other Azure Storage service, blob containers can be easily created through the 
Azure Portal, a REST API call, an Azure PowerShell or Azure CLI script, an Infrastructure as 
Code template, or a custom application using the Azure Blob Storage client library. The fol-
lowing steps describe how to create a new container in the Azure Portal:

1.	 Navigate to the storage accounts page in the Azure Portal and click on the storage 
account that was previously created.

2.	 In the left-side panel of the storage account blade, click Containers. Figure 4.11 shows 
where this button is located.

3.	 Click the + Container button at the top of the containers blade to configure a new con-
tainer. Figure 4.12 shows what this button looks like and where at the top of the page it 
is located.

F IGURE 4 .11   Containers button

F IGURE 4 .12   Create a New Container button.

https://docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview#blob-lifecycle-management
https://docs.microsoft.com/en-us/azure/storage/blobs/access-tiers-overview#blob-lifecycle-management


194  Chapter 4  ■  File, Object, and Data Lake Storage

4.	 Enter a name and choose one of the following three public access level options: Private 
(no anonymous access), Blob (anonymous read access for blobs only), or Container 
(anonymous read access for containers and blobs).

a.	 Private (no anonymous access) denies all anonymous requests and only allows 
authorized requests to access the container and its blobs. This is the default setting 
for new containers. Figure 4.13 illustrates a completed new container example using 
this option.

b.	 Blob (anonymous read access for blobs only) allows anonymous requests to access 
blobs in the container but denies anonymous requests trying to read container data.

c.	 Container (anonymous read access for containers and blobs) allows anonymous 
requests to access container and blob data, except for container permission settings 
and metadata.

5.	 The Advanced drop-down list in the New Container page allows you to alter the 
encryption scope and version-level immutability for container blobs. We will use the 
default options for this example.

6.	 Click Create to create the container.

Uploading a Blob

Uploading blobs to a container can be performed using a variety of different methods. 
Administrators can write scripts that create and manage blobs using Azure PowerShell and 
Azure CLI. Developers can implement custom logic in their applications that will upload and 
manipulate several blobs at a time via the REST API or the Azure Blob Storage client library. 

F IGURE 4 .13   New Container



Azure Storage  195

Management tools such as Azure Storage Explorer, AzCopy, Azure Data Factory, and Azure 
Data Box can be used to migrate massive amounts of data to Azure Blob Storage. These 
tools will be described later in this chapter in the subsections under “Management Tools.”

The following steps explore how to upload a blob through the Azure Portal:

1.	 Go to the container that was previously created.

2.	 Click the Upload button at the top of the containers blade to upload a new blob. 
Figure 4.14 shows what this button looks like and where at the top of the page it 
is located.

3.	 The Upload Blob pop-up page provides a way to browse your local computer for data 
to upload. It also provides a setting to overwrite the blob if it already exists.

4.	 The Advanced drop-down list allows you to define the authentication method used to 
upload the data as well as configure the blob type, access tier, retention policy, and other 
optional blob settings. Figure 4.15 illustrates an example of how this page can be used 
to upload a CSV file using the default options.

Blob Service REST API

The Blob service REST API can be used to upload, manage, organize, and delete containers 
and blobs. It allows users to manage Azure Blob Storage content using HTTP operations. 
For example, you can compile a list of all blobs in a specific container by issuing the follow-
ing GET operation:

https://<storage-account- 
name>.blob.core.windows.net/<container_name>?resttype=container&comp=list

For more information about the different operations that are available through the Blob 
service REST API, see the following link: https://docs.microsoft.com/en-us/rest/
api/storageservices/blob-service-rest-api.

Azure Blob Storage Client Library

The Azure Blob Storage client library is a part of the Azure SDK that users can use to build 
custom application logic for managing Azure Blob Storage. Users can take advantage of this 
SDK when building applications using different languages, including .NET, Java, Python, 
JavaScript, and C++. The library contains several classes that can be used to create, replace, 
list, and delete containers or blobs.

F IGURE 4 .14   Upload button

https://docs.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api
https://docs.microsoft.com/en-us/rest/api/storageservices/blob-service-rest-api


196  Chapter 4  ■  File, Object, and Data Lake Storage

The following are the most useful classes for interacting with Azure Blob Storage content:

■■ BlobServiceClient allows users to manipulate storage account resources such as blob 
containers.

■■ BlobContainerClient allows users to manipulate containers and their blobs. This class 
goes by ContainerClient in the Python and JavaScript versions of the Azure Blob Storage 
client library.

■■ BlobClient allows users to manipulate blobs.

Check out the following tutorial if you would like to learn more about how to get started 
building custom application logic that manipulates Azure Blob storage: https://docs 
.microsoft.com/en-us/azure/storage/blobs/storage-quickstart- 

F IGURE 4 .15   Upload blob

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet


Azure Storage  197

blobs-dotnet. While this specific tutorial uses .NET, there are several other tutorials avail-
able for the other languages that support the Azure Blob storage client library.

Azure Data Lake Storage Gen2
Azure Data Lake Storage Gen2, or ADLS for short, is an object storage solution that is built 
on top of Azure Blob Storage. It can be enabled when creating a storage account in the Azure 
Portal by selecting the Enable hierarchical namespace setting in the Advanced tab. The hier-
archical namespace allows users to easily organize data objects into a hierarchy of directories 
and subdirectories for efficient data access.

The addition of the hierarchical namespace to Azure Blob storage’s existing capabilities 
makes ADLS an ideal storage solution for big data and distributed analytics solutions. Users 
can easily organize data into different directories that are specific to where it is in the data 
processing life cycle. For example, there could be a raw directory that acts as a landing zone 
for new datasets, a cleansed directory that stores the data once it has been scrubbed of any 
errors or inconsistencies, and a report-ready directory that stores the data once aggregations 
and business logic have been applied to it. Furthermore, each of these directories can host 
several subdirectories that partition data by certain features such as year, month, and date.

ADLS is easily scalable and very cost-effective because it is built on top of Azure Blob 
Storage. This allows organizations to store data in multiple stages without having to worry 
about high costs or running out of storage. This allows users to leverage data at different life 
cycles for several different use cases. For example, data scientists can use raw and processed 
data to build their models, and analysts can use the report-ready directory to build reports 
or share aggregated datasets with other business units.

In addition to its performance enhancements, ADLS provides more granular access secu-
rity to what is available with Azure Blob Storage. Administrators can use POSIX-like access 
control lists (ACLs) to set user permissions at the directory and file level. Using ACLs to 
manage access for data stored in ADLS is described further later in this chapter in the section 
“Access Management.”

Azure Blob File System Driver

Perhaps the biggest benefit to using ADLS is its ability to allow users to manage and access 
data like they would with a Hadoop Distributed File System (HDFS). The Azure Blob File 
System (ABFS) driver is native to ADLS and is used by Apache Hadoop environments to cre-
ate and interact with data in ADLS. Typical environments in Azure that access ADLS with 
the ABFS driver include Azure HDInsight, Azure Databricks, and Azure Synapse Analytics.

The ABFS driver enables access to ADLS resources using a URI-based connection. Appli-
cations constructing the URI can use the following format to navigate to specific directories 
or files in ADLS:

abfs://<container-name>@<storage-account-name>.dfs.core.
windows.net/<path>/<file-name>

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-dotnet


198  Chapter 4  ■  File, Object, and Data Lake Storage

As you can see, the parent directory is a container object. This object can contain several 
levels of subdirectories depending on how the data is organized. For example, the directory 
hierarchy for storing product data by date could look like <product>/<year>/<month>
/<day>, where product is the parent directory and year, month, and day represent different 
subdirectories. Using this directory structure, let’s look at how you would format the ABFS 
URI to access product data from November 11, 2021:

abfs://product@dp900adls001.dfs.core.windows.net/2021/November/11/

This URI will access all the data in the 11 subdirectory. Adding a specific filename at 
the end of the URI, such as bicycles.csv, will redirect access to that one file. There is 
also support for accessing all files of a specific format by adding the * wildcard and the file 
extension to the end of the URI. The following extends the previous example by accessing all 
the CSV data produced on November 11, 2021.

abfs://product@dp900adls001.dfs.core.windows.net/2021/November/11/*.csv

Data movement with ABFS can be secured using a TLS connection. To 
use the secure version of the ABFS driver, change the abfs:// compo-
nent of the URI to abfss://.

Management Tasks for Azure Storage
There are several management activities that administrators and developers must consider 
when working with Azure Storage. For one, users will need to decide how they will design 
their Azure Storage deployments to be reusable across multiple environments. Administra-
tors will also need to decide how to secure their storage accounts, as well as how they will 
provide/restrict access to the different storage services that are created in the account. The 
following sections will discuss common methods used to perform these tasks as well as the 
tools users can utilize to manage their storage accounts.

Deployment Scripting and Automation
Automated resource deployments are standard for any multi-environment workload that 
uses cloud resources. As with any Azure resource, Azure Storage deployments can be scripted 
using a variety of methods including Azure PowerShell, Azure CLI, and Infrastructure as 
Code templates. Azure PowerShell and Azure CLI are also common tools that can be used 
to manage data stored in Azure Storage. The following sections examine how to use Azure 
PowerShell, Azure CLI, and ARM templates to deploy Azure Storage resources.

mailto:product@dp900adls001.dfs.core.windows.net
mailto:product@dp900adls001.dfs.core.windows.net


Management Tasks for Azure Storage  199

Azure PowerShell
Users can easily write Azure PowerShell scripts that will deploy and manage Azure Storage 
resources. The following is an example of a script that will create a standard general-purpose 
v2 storage account:

<# Sign into your Azure environment. Not required 
if running this script in the Azure Cloud Shell #>
Connect-AzAccount
 
$resourceGroupName = "dp900storageacct001"
$storageAccountName = "dp900stracct001"
$location = "East US"
 
New-AzStorageAccount -ResourceGroupName $resourceGroup `
  -Name $storageAccountName `
  -Location $location `
  -SkuName Standard_RAGRS `
  -Kind StorageV2

To enable ADLS using Azure PowerShell, add the  
EnableHierarchicalNamespace parameter to the script and set it to 
$True.

The next step after creating the storage account and setting security postures is to begin 
creating file shares and/or blob containers. The following script creates a new blob container 
in the previously created storage account:

$resourceGroupName = "dp900storageacct001"
$storageAccountName = "dp900stracct001"
$containerName = "dp900container01"
 
 
# Retrieve an existing Storage Account reference
$storageContext = Get-AzStorageAccount -ResourceGroupName $resourceGroupName `
    -Name $storageAccountName
 
# Create the container
New-AzStorageContainer -Name $containerName `
    -Context $storageContext `



200  Chapter 4  ■  File, Object, and Data Lake Storage

Once the container is created, you can start uploading data to it using the Set-
AzStorageBlobContent Azure PowerShell command. The following script demonstrates 
how to use this command to upload an image stored on a local directory to the container. It 
also configures the blob to use the hot access tier for quick access.

$resourceGroupName = "dp900storageacct001"
$storageAccountName = "dp900stracct001"
$containerName = "dp900container01"
 
 
# Retrieve an existing Storage Account reference
$storageAccount = Get-AzStorageAccount -ResourceGroupName $resourceGroupName `
    -Name $storageAccountName
 
# Get the Storage Account context
$storageContext = $storageAccount.Context
 
# Upload a file to the Hot access tier
Set-AzStorageBlobContent -File "D:\Images\Image001.jpg" `
  -Container $containerName `
  -Blob "Image001.jpg" `
  -Context $storageContext `
  -StandardBlobTier Hot

The script can be modified to upload several files by looping through the local directory. 
More information about creating and managing Azure Blob storage resources with Azure 
PowerShell can be found at https://docs.microsoft.com/en-us/azure/storage/
blobs/storage-quickstart-blobs-powershell.

Azure CLI
Azure CLI is another scripting environment that administrators can use to create and man-
age Azure Storage resources. The following Azure CLI script uses the same parameters as 
the Azure PowerShell script in the previous section to create a storage account and a blob 
container:

resourceGroupName='dp900storageacct001'
storageAccountName='dp900stracct001'
containerName='dp900container01'
location='eastus'
 
az storage account create \
  --name $storageAccountName \
  --resource-group $resourceGroupName \
  --location $location \

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-powershell
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-powershell


Management Tasks for Azure Storage  201

  --sku Standard_RAGRS \
  --kind StorageV2
 
az storage container create \
    --account-name $storageAccountName \
    --name $containerName \

More information about creating and managing Azure Blob storage resources with Azure 
CLI can be found at https://docs.microsoft.com/en-us/azure/storage/blobs/
storage-quickstart-blobs-cli.

ARM Template
Like other Azure services, Infrastructure as Code templates such as Azure Resource Manager 
(ARM) templates are the most optimal way to define resources for Azure Storage deploy-
ments. These templates can be used to quickly build Azure Storage services in multiple 
development environments, allowing developers to easily build and test new functionality.

One example of an ARM template that creates a standard storage account can be found 
at https://github.com/Azure/azure-quickstart-templates/tree/master/
quickstarts/microsoft.storage/storage-account-create. The template can be 
deployed using the following Azure PowerShell:

Connect-AzAccount
$resourceGroupName = "dp900storageacct001"
$location = "East US"
 
New-AzResourceGroup 
    -Name $resourceGroupName
    -Location $location
 
New-AzResourceGroupDeployment 
    -ResourceGroupName $resourceGroupName `
    -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-
templates/master/quickstarts/microsoft.storage/storage-account-create
/azuredeploy.json

Azure Storage Security
Microsoft provides several layers of security to ensure that data stored in one of the Azure 
Storage services is protected from unauthorized access. As with any other data service in 
Azure, there are several network isolation and identity management options that can be 
used to limit who can access data in a storage account. The following sections examine the 
methods available for securing data in Azure Storage as well as some of the default security 
standards such as data encryption and protection from accidental deletes.

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://github.com/Azure/azure-quickstart-templates/tree/master/quickstarts/microsoft.storage/storage-account-create
https://github.com/Azure/azure-quickstart-templates/tree/master/quickstarts/microsoft.storage/storage-account-create


202  Chapter 4  ■  File, Object, and Data Lake Storage

Network Isolation
Storage accounts have a public endpoint that provides access over the Internet. Azure allows 
users to isolate this endpoint by limiting access to certain IP addresses through a firewall, 
trusted Azure services, or specific Azure subnets. Azure also allows users to attach a private 
IP address from a VNet to a storage account, restricting communication to traffic that can 
access the VNet. This is the Microsoft recommended approach for securing storage accounts 
that store sensitive data such as personally identifiable information (PII).

All these options can be configured through the Azure Portal, or an Azure PowerShell or 
Azure CLI script after a storage account is created. Let’s walk through how to configure one 
of the network isolation options in the Azure Portal:

1.	 Navigate to the storage accounts page in the Azure Portal and click on the storage 
account that was previously created.

2.	 In the left-side panel of the storage account blade, click Networking. Figure 4.16 shows 
where this button is located.

3.	 There are three tabs listed at the top of the networking page: Firewalls And Virtual Net-
works, Private Endpoint Connections, and Custom Domain. We will cover the Firewalls 
And Virtual Networks and Private Endpoint Connections tabs for the purpose of con-
figuring network isolation on a storage account. Just know that the Custom Domain tab 
allows you to map a custom domain to a blob or static website endpoint.

4.	 The Firewalls And Virtual Networks tab enables users to allow access from specific 
VNets and subnets as well as specific IP addresses. Figure 4.17 illustrates these settings.

This tab also allows you to configure access from trusted Azure services and read access 
to storage logging and metrics from any network. There is also an option to determine 
whether traffic is routed over the Microsoft network or the Internet as it travels from 
the source application to the storage account’s public endpoint. These settings are illus-
trated in Figure 4.18.

F IGURE 4 .16   Networking button



Management Tasks for Azure Storage  203

You can find an extensive list of trusted Azure services at https:// 
docs.microsoft.com/en-us/azure/storage/common/storage-
network-security?tabs=azure-portal#grant-access-to-
trusted-azure-services.

5.	 If you click the Private Endpoint Connections tab, you will be able create a new private 
endpoint that will have its very own private IP address from a VNet. This will restrict 
storage account access to traffic that can communicate with that VNet.

F IGURE 4 .18   Exceptions and Networking Routing

F IGURE 4 .17   Virtual Network and Firewall Access

https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#grant-access-to-trusted-azure-services
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#grant-access-to-trusted-azure-services
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#grant-access-to-trusted-azure-services
https://docs.microsoft.com/en-us/azure/storage/common/storage-network-security?tabs=azure-portal#grant-access-to-trusted-azure-services


204  Chapter 4  ■  File, Object, and Data Lake Storage

Access Management
Azure Storage requires that every application interacting with a storage account has the 
appropriate authorization permissions. The only exception to this rule is when anony-
mous read access for containers or blobs is configured. Azure allows organizations to use 
either one of or a combination of the following authorization methods to provide storage 
account access:

■■ Storage account access keys

■■ Shared access signatures (SAS)

■■ Azure AD Integration

■■ AD Domain Services (AD DS) for Azure Files

■■ Access control lists (ACLs) for ADLS

The following sections examine each of these options in further detail.

Storage Account Access Keys

Storage accounts natively include two access keys that can be used to authorize access to 
blob, file, queue, and table storage services. These keys can be regenerated at any point 
in time and can be kept in a secure location like Azure Key Vault. They can be found 
by clicking on the Access keys button on the left side of the storage account blade for a 
storage account.

Access keys can be used in the authorization header for any REST API call to provide 
storage access. Instead of assigning an access key to an authorization header, users can 
choose to use one of the predefined connection strings that are available in the access keys 
page to authorize their application requests.

While access keys are an available authorization option for storage accounts, it is recom-
mended to use Azure AD credentials instead. Access keys provide shared authorization to 
multiple storage services, which can provide more access than what is needed. Azure AD 
can be used to provide more granular permissions to specific storage services such as blob 
containers and file shares. For this reason, Azure provides administrators with the option 
to block storage account requests that use an access key. This can be done by clicking the 
Configuration button (under Settings) on the left side of the storage account blade for your 
storage account and clicking Disabled under the Allow Storage Account Key Access setting.

Shared Access Signature (SAS)

A shared access signature (SAS) delegates access permissions to specific storage account 
resources over a predetermined period of time. A SAS provides more granular access than an 
account key, as they allow administrators to restrict what resources a client application can 
access and what permissions it has on those resources.

Administrators can create a SAS using the Azure Portal, Azure PowerShell, Azure CLI, or 
the Azure Storage client library for .NET. Creating a SAS results in one or more signed URLs 
that point to each storage service that the SAS was provided access to. The URL includes a 
token that indicates what permissions client applications are authorized to use with the SAS.



Management Tasks for Azure Storage  205

To create a SAS in the Azure Portal, click on the Shared Access Signature button on the 
left side of the storage account blade for your storage account. Figure 4.19 illustrates the 
configuration options on the shared access signature page.

The following list describes each configuration option on this page:

■■ Allowed services defines which storage services the SAS can access. Options include 
blob, file, queue, and table storage.

■■ Allowed resource types sets the access granularity for the SAS. For example, setting the 
allowed resource type scope to Service will enable access to the entire blob, file, queue, 
or table service. Setting the Object resource type scope will limit access to data objects 
stored in a storage service. Options include service, container, and object types.

F IGURE 4 .19   Shared access signature configuration options



206  Chapter 4  ■  File, Object, and Data Lake Storage

■■ Allowed permissions defines what permissions the SAS is authorized to perform. 
Options include read, write, delete, list, add, create, update, process, and immu-
table storage.

■■ Blob versioning permissions sets whether the SAS can delete blob versions if versioning 
is enabled.

■■ Allowed blob index permissions defines what permissions the SAS is authorized to per-
form on blob indexes. Options include read/write and filter.

■■ Start and expiry date/time defines how long the SAS is valid.

■■ Allowed IP addresses restricts access to one IP address or a range of IP address. Leaving 
this option empty will allow any IP address to communicate with the storage account 
via the SAS.

■■ Allowed protocols sets the protocols permitted for a request using the SAS. By default, 
this option is set to HTTPS only, but it can be changed to allow HTTPS and HTTP con-
nections. It is recommended to only allow HTTPS connections.

Click the Generate SAS And Connection String button at the bottom of the page to gen-
erate the SAS token as well as the connection strings and SAS URLs for each of the selected 
storage services.

As with access keys, it is recommended to use Azure AD credentials instead of a SAS. 
The same process that blocks requests made with an access key also blocks requests that 
use a SAS.

Azure AD Integration

Azure AD is a supported identity management service for Azure Storage services. Adminis-
trators can assign storage access permissions to Azure AD users, groups, and applications 
with Azure RBAC roles. These roles can be used to grant access permissions to Azure AD 
identities at the following storage levels:

■■ The storage account level—Azure AD identities that are scoped to a storage account 
are propagated with their delegated permissions to all resource objects hosted in the 
storage account.

■■ The resource level—This includes any resource that may be hosted by a storage account, 
such as a blob container or a file share. An Azure AD identity scoped to a resource can 
interact with that resource’s data, granted the action the identity is trying to perform is 
allowed by the permissions assigned to it.

ADLS and Azure Files also allow administrators to set permissions at 
the subdirectory and blob/file level using ACLs. This level of granularity 
cannot be set with RBAC roles.

Identities can be set using a variety of methods such as through the Azure Portal, Azure 
PowerShell, and Azure CLI. To add identities through the Azure Portal, click the Access 
Control (IAM) button in the left-side panel of the resource you want to add the identity to. 



Management Tasks for Azure Storage  207

Click the Add button on the Access Control (IAM) page and start adding role assignments to 
identities. Along with generic RBAC roles such as Owner, Contributor, and Reader that will 
grant administrative access to the object, Azure Storage services have built-in roles that grant 
resource-specific permissions. The following is a list of roles specific to Azure Storage that 
are relevant to the DP-900 exam:

■■ Storage Blob Data Owner—Identities assigned this role have full access to blob con-
tainers and data. It can also be used to assign ACLs to ADLS folders. This role applies to 
Azure Blob Storage and ADLS.

■■ Storage Blob Data Contributor—Identities assigned this role have read, write, and delete 
access to blob containers and data. This role applies to Azure Blob storage and ADLS.

■■ Storage Blob Data Reader—Identities assigned this role have read access to blob con-
tainers and data. This role applies to Azure Blob Storage and ADLS.

■■ Storage File Data SMB Share Elevated Contributor—Identities assigned this role have 
read, write, delete, and modify NTFS permission access to file shares over SMB. This 
role applies to Azure Files.

■■ Storage File Data SMB Share Contributor—Identities assigned this role have read, write, 
and delete access to files shares over SMB. This role applies to Azure Files.

■■ Storage File Data SMB Share Reader—Identities assigned this role have read access to 
files shares over SMB. This role applies to Azure Files.

There are also several built-in roles specific to Azure Queue and Azure Table storage, 
including contributor and reader roles. These roles assign similar permissions to the contrib-
utor and reader roles for Azure Blob Storage and Azure Files.

AD Domain Services (AD DS) for Azure Files

Azure Files uses on-premises AD Domain Services (AD DS) and Azure AD Domain Services 
(Azure AD DS) to manage authentication and authorization through SMB. This is useful in 
hybrid scenarios where on-premises file servers are migrated to Azure Files but still have to 
support on-premises AD identities. Azure AD DS enables administrators to assign file share 
access permissions with one of the built-in RBAC roles for Azure Files to identities hosted 
in Azure AD.

To enable either on-premises AD DS or Azure AD DS for Azure Files, click on the File 
Shares button in the left-side panel of your storage account. Check to see if AD is configured 
at the top of the file shares page. Click Not Configured if AD is not configured. This setting 
will look like Figure 4.20 if AD is not configured.

F IGURE 4 .20   Configure Active Directory for Azure Files.



208  Chapter 4  ■  File, Object, and Data Lake Storage

The Active Directory page will allow you to set an on-premises Active Directory domain 
controller or Azure AD DS as an identity provider for the Azure Files instance. Identities can 
be scoped to file shares and assigned RBAC roles once this step is complete.

Azure Files use Kerberos for authenticating application requests with either on-premises 
AD DS or Azure AD DS. When an application attempts to access an Azure file share, the 
access request is routed to AD DS or Azure AD DS for authentication. If the identity the 
application is using is found and authentication is successful, the on-premises AD DS or 
Azure AD instance will return a Kerberos token to the application. The application then 
sends a request to the Azure file share with the Kerberos token, and the file share uses the 
token to authorize the request.

More information about using on-premises AD DS, Azure AD DS, and Kerberos for 
authentication and authorization with Azure Files can be found at https://docs 
.microsoft.com/en-us/azure/storage/files/storage-files-active-
directory-overview#how-it-works.

ADLS Access Control Lists (ACLs)

While RBAC roles will generally grant the appropriate level of access to a user, they can 
sometimes grant too much privilege. Identities can be granted access to a storage account 
or a blob container with an assigned RBAC role such as Storage Blob Data Contributor or 
Storage Blob Data Reader to limit what that identity can do with data. However, this pro-
vides identities access to all of the data in a container. RBAC cannot be used to grant specific 
permissions to individual blobs in a container. ADLS enables administrators to grant blob-
level access with the use of ACLs.

ACLs provide administrators with the ability to grant Azure AD identities read, write, or 
execute permissions to directories and blobs in ADLS. Table 4.3 details how these permis-
sions can be used.

TABLE 4 .3   Blob and Directory ACL Permissions

Permission Blob Directory

Read (R) Read the contents of a 
blob

Requires read and execute to list the directory’s con-
tents

Write (W) Write and append 
content to a blob

Requires write and execute to create child items in 
the directory

Execute 
(X)

Does not provide any 
permissions to blobs

Required to traverse the child items (such as addi-
tional subdirectories and blobs) in the directory

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-active-directory-overview#how-it-works
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-active-directory-overview#how-it-works
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-active-directory-overview#how-it-works


Management Tasks for Azure Storage  209

The key concept to remember about providing blob-level read or write permissions via 
ACLs to a specific identity is that the identity will need execute permission to each of the 
directories that lead to the blob. If we use our previous example of product data that is orga-
nized in a date hierarchy, then granting read access to an individual blob will require execute 
access on the product, year, month, and day directories that precede the blob.

ACLs can be set through the Azure Portal, Azure PowerShell, Azure CLI, the REST API, 
or the Azure Storage client library. To manage ACLs through the Azure Portal, go to an 
ADLS-enabled storage account and click on a container. Click on the Manage ACL button in 
the left-side panel of the container blade. The Manage ACL page will allow you to add iden-
tities and assign them read, write, or execute permissions. Figure 4.21 illustrates an example 
of this page.

Because ADLS is an add-on to Azure Blob Storage, it has the ability to leverage both 
Azure RBAC and ACLs to control user access. ADLS uses the following rules when evalu-
ating an identity’s RBAC and ACL permissions:

1.	 Azure RBAC role assignments are evaluated first and take priority over ACL 
assignments.

2.	 If the operation is fully authorized based on the identity’s RBAC assignment, then any 
ACL it may be assigned is not evaluated.

3.	 If the operation is not authorized via RBAC, then the identity’s ACLs are evaluated.

Figure 4.22 illustrates the permission flow ADLS uses to evaluate a read request.

F IGURE 4 .21   Manage ACLs in the Azure Portal.



210  Chapter 4  ■  File, Object, and Data Lake Storage

Identity attempts to
read blob content

Is assigned Storage
Blob Data Owner?

No

No

No

No

Is assigned Storage Blob
Data Contributor?

Is assigned Storage Blob
Data Reader?

Has read permissions
on the data and execute
permissions on its root
directories via ACLs?

Access denied

Yes

Yes

Yes

Yes

Read data

F IGURE 4 .22   How ADLS evaluates identity access



Management Tasks for Azure Storage  211

Data Encryption
All data that is stored in an Azure storage account is encrypted at rest by default. Azure 
Storage also encrypts data in transit using TLS and allows organizations to enforce a 
minimum required version of TLS for requests made to the storage account.

Data stored in a storage account is encrypted with Microsoft-managed keys by default. 
This abstracts encryption key management from storage account administrators. While this 
can be a benefit to some organizations, others require more control of the encryption keys. 
For this reason, Azure Storage allows organizations to use their own keys to encrypt storage 
account data. Customer-managed keys must be stored in Azure Key Vault.

A storage account can be configured to use customer-managed keys by changing its 
encryption type. To do this, click the Encryption button on the left side of the storage 
account blade for your storage account and change the encryption type to Customer 
Managed Keys. This will prompt you to select an Azure Key Vault and an encryption key.

Storage accounts using customer-managed encryption keys require soft 
delete and purge protection to be enabled on the Azure Key Vault in-
stance. Soft delete is automatically enabled for all key vaults and cannot 
be disabled. Purge protection can be enabled when a new key vault is 
created or after it is created.

Data Protection
In addition to providing data redundancy for business continuity, Azure Storage protects 
data from being deleted or modified with the following features:

■■ Soft delete protects data from being accidentally deleted. Storage resources can be recov-
ered when this feature is enabled, within a specified retention period. During the reten-
tion period, deleted storage resources can be restored to their state at the time they were 
deleted. Soft delete can be configured for file shares, containers, and blobs.

■■ Blob versioning captures the state of a blob at a given point in time. When this is 
enabled, Azure Blob Storage will create a new version of the blob when it is created and 
every time it is modified. This feature is not available for ADLS or Azure Files.

■■ Immutability policies enable users to restrict data from being modified or deleted once 
it is written to Azure Blob Storage. With this feature, data can be read as many times as 
needed but never modified or deleted for a user-specified interval.

Azure Blob storage supports two types of immutability policies: time-based and legal 
hold. Time-based retention policies allow users to define the number of days the data 
is immutable, anywhere between 1 and 146,000 days. Legal hold policies restrict data 
from being modified or deleted until the legal hold is explicitly removed.



212  Chapter 4  ■  File, Object, and Data Lake Storage

Azure Storage Common Connectivity Issues
Applications interacting with Azure Storage will have to traverse multiple levels of security 
to establish successful connections. While this is paramount for storing data securely in 
Azure, it can potentially lead to some connectivity interruptions. These can be expected or 
unexpected and are typically related to authorization issues, resources not being available, or 
network failure. The following sections describe some common Azure Storage connectivity 
issues and how to fix them.

Forbidden Exceptions
Forbidden exceptions typically occur when an application is attempting to authenticate with 
an access key, SAS, or Azure AD identity that does not have the appropriate access permis-
sions to the storage account. Client applications that experience this issue will throw a 403 
exception to indicate that the request was unauthorized.

If the client application is authenticating with an access key, verify that the access key 
is still valid. There is a chance that the key had been regenerated without it being changed 
in the application. If the application is using an Azure AD identity to access the storage 
account, verify that the identity has the correct permissions to perform the action the appli-
cation is attempting.

While authentication issues with an access key or Azure AD can occur, 403 forbidden 
exceptions are typically the result of an invalid or expired SAS. Use the following rules to 
minimize the chances of this issue occurring:

■■ Do not set a future start time when initially setting up the SAS. It is possible that the 
SAS will not be valid if there are any clock differences between the time that the client 
application is sending a request to the storage account and the SAS’s start time.

■■ Do not set a short expiry time on the SAS.

■■ Make sure that the version parameter in the SAS matches the Azure Storage client 
library version that the client application is using. Always use the latest version of the 
Azure Storage client library to mitigate this issue.

Resource Not Found
Resource not found errors imply that the resource the client application was trying to 
connect to does not exist. Client applications that experience this issue will throw a 404 
exception. There are several possible reasons for this error:

■■ The object the application is trying to access was deleted by a previous operation.

■■ The application is using a SAS that does not include all of the necessary permissions to 
perform the attempted operation.

■■ Unexpected network failures.



Management Tasks for Azure Storage  213

There are several third-party tools that can be used to diagnose and 
troubleshoot network-related issues with Azure Storage, including 
Fiddler and Wireshark. These tools are outside of the scope for the 
DP-900 exam, but you can visit https://docs.microsoft.com/en-
us/azure/storage/common/storage-monitoring-diagnosing-
troubleshooting?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.
json&tabs=dotnet#appendices to learn more about when and how to 
use them.

Management Tools
Microsoft provides several tools for uploading and managing data stored in Azure Storage. 
These also include tools that can be used to migrate data from legacy storage solutions to 
Azure Storage. The following sections describe some of the most popular tools for interact-
ing with Azure Storage.

AzCopy
AzCopy is a command-line tool that can be used to migrate data into and out of Azure 
Storage. It includes a set of commands that users can leverage to move data to an Azure 
storage account from a local file share, Amazon S3, Google Cloud Storage, or another Azure 
storage account.

Download the most current version of AzCopy from the following link to get started: 
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-
azcopy-v10#download-azcopy. Once it’s installed, you will be able to run AzCopy com-
mands through a local command prompt.

Moving data to or from a storage account with AzCopy requires an authorized connec-
tion. Table 4.4 lists the authorization methods that AzCopy can use when connecting to 
Azure Storage:

TABLE 4 .4   Supported AzCopy authorization methods

Storage Service Supported Authorization Method

Azure Blob Storage Azure AD and SAS

ADLS Azure AD and SAS

Azure Files SAS

https://docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting?toc=/azure/storage/blobs/toc.json&tabs=dotnet#appendices
https://docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting?toc=/azure/storage/blobs/toc.json&tabs=dotnet#appendices
https://docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting?toc=/azure/storage/blobs/toc.json&tabs=dotnet#appendices
https://docs.microsoft.com/en-us/azure/storage/common/storage-monitoring-diagnosing-troubleshooting?toc=/azure/storage/blobs/toc.json&tabs=dotnet#appendices
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10#download-azcopy
https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10#download-azcopy


214  Chapter 4  ■  File, Object, and Data Lake Storage

All AzCopy statements begin with the azcopy keyword to indicate that the statement is 
using the AzCopy executable. Most AzCopy statements use the following format to perform 
an action:

azcopy [command] [source-file-path] [destination-storage-account] 
--[optional-flag]

For example, the following statement uses this format to upload a local directory of data 
to Azure Blob Storage:

azcopy copy 'C:\myDirectory' 
'https://dp900stracct001.blob.core.windows.net/dp900container01'
--recursive=true

This example assumes that the statement is being run with an Azure AD identity that 
is authorized to create data in the storage account. To use a SAS instead of Azure AD to 
authenticate to the storage account, simply add the SAS token to the end of the blob URL 
(for example, https://dp900stracct001.blob.core.windows.net/dp900containe
r01<SAS-Token>).

Azure Storage Explorer
Azure Storage Explorer is a free desktop application that can be used to manage Azure 
Storage resources across Azure subscriptions. The application uses AzCopy to perform 
resource management and data movement operations, allowing users to leverage the 
performance benefits of AzCopy with an easy-to-use GUI.

You can get started with Azure Storage Explorer by downloading the most current ver-
sion from https://azure.microsoft.com/en-us/features/storage-explorer. 
Here you will find download options for Windows, macOS, and Linux devices. Once it’s 
installed, users can leverage Azure Storage Explorer to perform the following tasks:

■■ Connect to and manage Azure storage accounts across multiple Azure subscriptions.

■■ Create, manage, and delete blob containers, ADLS directories, and file shares.

■■ Upload, manage, download, and delete data and virtual hard disks.

Use the following steps to log into your Azure account and list the subscriptions and 
storage accounts you have access to:

1.	 Open Azure Storage Explorer and click the Connect to Azure Storage button. 
Figure 4.23 illustrates where you can find this button.

F IGURE 4 .23   Connect to Azure Storage button

https://dp900stracct001.blob.core.windows.net/dp900container01<SAS-Token>
https://dp900stracct001.blob.core.windows.net/dp900container01<SAS-Token>
https://azure.microsoft.com/en-us/features/storage-explorer/


Management Tasks for Azure Storage  215

2.	 The Connect to Azure Storage pop-up window provides connection options at the Azure 
subscription, storage account, and storage service levels. Click the Subscription button 
and follow the prompts to sign into your Azure account.

3.	 After you successfully log into your Azure account, the account and its associated sub-
scriptions will appear under the Account Management page. Select the subscription that 
hosts the storage accounts you want to manage and click Open Explorer.

4.	 The Explorer page will list all of the storage accounts and storage resources in the 
selected subscription(s). Figure 4.24 illustrates how the previously created blob con-
tainer and file share is listed in Azure Storage Explorer.

When you click on a blob container or a file share, the main pane will display all of its 
contents as well as options to upload new items and create a new subfolder. Click on the 
previously created blob container and click the Upload button in the top ribbon. Click 
Upload Files to upload one or more data files. The Upload Files pop-up page allows you to 
select the files you want to upload, the blob type, and the access tier for the blob. Figure 4.25 
shows an example of this page uploading a block blob with the hot access tier.

Once it’s uploaded, you will be able to manipulate the data with several options in the top 
ribbon and by right-clicking the blob.

Azure Data Factory
Azure Data Factory is a PaaS ETL technology that can be used to orchestrate data 
movement and data transformation activities. With the Azure Data Factory’s native data 
store connectors, users can quickly build connections to on-premises and cloud data stores. 
Developers can then use those established connections, called Linked Services, to build data-
sets that are used in Azure Data Factory pipelines. Pipelines consist of activities that process 
datasets, storing them in formats that can be used by data science and reporting applications.

One of the core components of Azure Data Factory is its Copy Data activity. Developers 
can use this activity to move large amounts of data from on-premises and cloud data stores 
to a central data repository in Azure Storage. The Copy activity is typically the first step used 
in an Azure Data Factory ETL pipeline, consolidating raw, source data in a single ADLS 
account. This activity is also used to migrate binary objects such as videos, images, and 
audio files to Azure Blob Storage.

F IGURE 4 .24   Storage account display



216  Chapter 4  ■  File, Object, and Data Lake Storage

Creating Azure Data Factory resources such as linked services, datasets, pipelines, and 
pipeline activities is covered in further detail in Chapter 5, “Modern Data Warehouses 
in Azure.”

Azure Data Box
For some organizations, using a programmatic approach to migrating data from an on-
premises appliance to Azure can take longer than what is acceptable. Microsoft can support 
organizations facing this issue with Azure Data Box. Azure Data Box is a physical device 
that lets organizations send large amounts of data to Azure very quickly. It is typically used 
to migrate datasets that are larger than 40 TBs in scenarios with limited or no network con-
nectivity. Azure Data Box is used in the following scenarios:

■■ Moving large amounts of media data such as videos, images, and audio files to Azure

■■ Migrating several VMs to Azure at once

■■ Migrating large amounts of historical data that is used by distributed analytics solutions

F IGURE 4 .25   Upload Files pop-up page



Summary  217

Azure Data Box can also be used to export data from Azure Storage to an on-premises 
datacenter.

The following steps describe the workflow used to migrate data to Azure with 
Azure Data Box:

1.	 Order the device through the Azure Portal. Provide shipping information and the desti-
nation Azure storage account for the data.

2.	 Once the device is delivered, connect the device to your network using a wired con-
nection. Make sure the computer from which you will be copying the data has access 
to the data.

3.	 Copy the data to the device.

4.	 Once the data has finished copying, turn off the device and ship it back to the Azure 
datacenter that you are migrating the data to.

5.	 The data is moved to the designated Azure storage account once the device is returned.

More information about procuring and managing an Azure Data Box device can be found 
at https://docs.microsoft.com/en-us/azure/databox/data-box-overview.

Summary
This chapter covered file and object storage concepts and when to use one over the other. 
In a nutshell, file storage is used to organize data on a file share and is typically used for 
network-wide collaboration. File storage is optimized for small amounts of data that can be 
organized using a hierarchy of directories and subdirectories. Object storage is used to store 
large volumes of data in binary and text format. This includes images, videos, audio, and 
data used in distributed analytics solutions.

Azure Storage is a multi-purpose PaaS storage platform that allows users to create object, 
file, key-value, and queue data stores. A storage account is the highest level of management 
for Azure Storage and can host one or more storage services. The storage services include 
Azure Blob storage, Azure Data Lake Storage Gen2, Azure Files, Azure Table storage, and 
Azure Queue storage.

Depending on the performance requirements for the use case, storage accounts can be 
configured to one of two account types: standard or premium. Both standard and pre-
mium storage accounts replicate their data three times locally for high availability. Standard 
storage accounts also allow users to configure a secondary region that will replicate the data 
three more times in a different Azure region for disaster recovery benefits.

Azure Files is a fully managed file share solution in Azure with support for SMB and NFS 
access protocols. File shares can be easily mounted to network drives or synchronized to 
a local machine using Azure File Sync. Azure offers the following four storage tiers for file 
shares to meet the performance and price requirements of different workloads: premium, 
transaction optimized, hot, and cool.

https://docs.microsoft.com/en-us/azure/databox/data-box-overview


218  Chapter 4  ■  File, Object, and Data Lake Storage

Azure Blob Storage is Azure’s object storage solution. Typical Azure Blob Storage use 
cases include storing binary data such as images and videos and storing large amounts of 
textual data for big data processing solutions and as a data archive. Data in Azure Blob 
Storage is represented as blob objects. Blobs can be stored in one of three access tiers that 
allow users to store blob data in the most cost-effective manner depending on latency 
requirements and how frequently they are accessed.

Azure Data Lake Storage Gen2 (ADLS) is an object storage solution that is built on top 
of Azure Blob Storage. With its hierarchical namespace implementation and native HDFS 
support, ADLS is an ideal storage solution for big data analytics solutions.

As with any service in Azure, Azure Storage services can be deployed manually in the 
Azure Portal or automated with a script or an Infrastructure as Code template. Azure 
Storage provides multiple methods to secure data, including several network isolation and 
access management techniques. Data is natively encrypted at rest and in transit and is pro-
tected from being accidentally deleted or modified.

This chapter ends by describing some of the tools that can be used to manage and move 
data to Azure Storage. Data movement can be managed through a command line with 
AzCopy, graphically with Azure Storage Explorer, or as a part of an ETL pipeline with Azure 
Data Factory. Microsoft also offers Azure Data Box, a physical device that organizations can 
procure to migrate large amounts of data. Once it’s ordered and received, organizations can 
connect an Azure Data Box device to their local network and upload data to it. The Azure 
Data Box device can then be shipped back to an Azure datacenter where Microsoft will 
upload the data to a storage account of the organization’s choosing.

Exam Essentials

Describe the characteristics of object storage.   Understand what constitutes object storage. 
This can range from unstructured data such as videos, images, and audio to semi-structured 
or structured data files that are used in distributed compute solutions. These data stores are 
also used to store static content, data backups, and archive data.

Describe Azure Storage.   For the exam, remember that Azure Storage is a multi-purpose 
storage platform that allows users to create Azure Blob Storage, Azure Data Lake Storage 
Gen2, Azure Files, Azure Queue storage, and Azure Table storage services. Storage accounts 
offer two performance tiers, standard and premium, depending on the type of storage and 
hardware speed needed. There are four redundancy options that storage accounts can 
use for business continuity, including locally redundant storage (LRS), zone-redundant 
storage (ZRS), geo-redundant storage (GRS), and geo-zone-redundant storage (GZRS). The 
secondary GRS and GZRS regions can be configured to be readable.

Describe Azure Files.   Azure Files is a storage service that allows organizations to build 
fully managed file shares in Azure. File shares deployed through Azure Files can be accessed 
using SMB on standard and premium storage accounts or NFS on premium storage 
accounts. Remember that it has four access tiers: premium (only available on premium 



Exam Essentials  219

storage accounts), transaction optimized, hot, and cool. Azure file shares can be mounted to 
any computer in the world that is running a Windows, Linux, or macOS operating system. 
Users can also access files by using Azure File Sync to create a local cache of the Azure file 
share on a machine running Windows Server 2012 R2 or higher. Users can connect to an 
Azure file share from their local network by either opening TCP port 445 or by attaching a 
private endpoint to the host storage account and establishing a VPN or ExpressRoute con-
nection between the private endpoint’s VNet and the local network.

Describe Azure Blob Storage.   Azure Blob Storage is Microsoft’s object storage solution 
in Azure. It can store any type of file and is optimized for storing videos, images, audio, 
text formatted files used for big data processing, backups, and archival data. For the exam, 
remember that a single storage account can have an unlimited number of containers, and 
a single container can have an unlimited number of blobs. Remember that there are three 
types of blobs: block blobs, append blobs, and page blobs.

Blobs can be set to use one of three different access tiers, including hot, cool, and archive. 
The appropriate setting for a given blob depends on how frequently it is accessed and what 
its latency requirements are.

Describe Azure Data Lake Storage Gen2.   Azure Data Lake Storage Gen2, or ADLS for 
short, is an object storage solution that is built on top of Azure Blob Storage. It uses a hierar-
chical namespace to organize data in a structure of directories and subdirectories for efficient 
data access. This makes it the ideal storage solution for big data and distributed analytics 
solutions, such as those built with Azure HDInsight, Azure Databricks, or Azure Synapse 
Analytics. Remember that the Azure Blob File System (ABFS) driver allows Apache Hadoop 
environments to easily interact with data stored in ADLS.

Describe automated Azure Storage deployments.   As with other Azure data services, the 
DP-900 exam will include some questions about best practices for Azure Storage deploy-
ments. Azure PowerShell, Azure CLI, and Infrastructure as Code templates are commonly 
used to automate Azure Storage deployments across multiple development environments.

Describe network isolation for Azure Storage.   Like other data services in Azure, storage 
accounts use a public endpoint that can be secured using an IP firewall or by allowing 
access to specific Azure VNets or Azure services. Users can also attach private endpoints to a 
storage account, restricting access to only applications that can communicate with the VNet 
the IP address is in.

Describe access management for Azure Storage.   Remember that there are three methods 
that can be used to manage authentication and authorization for storage accounts: access 
keys, shared access signatures (SAS), and Azure AD identities. Microsoft recommends that 
access management is done with Azure AD identities as these are easier to manage and they 
provide more granular levels of permissions than access keys or SAS. Know that there are 
several Azure RBAC roles that are specific to accessing different types of Azure storage. Also 
remember that ADLS allows a combination of Azure RBAC and POSIX-like access control 
lists (ACLs) to provide access at the storage account, container, directory, and blob levels.



220  Chapter 4  ■  File, Object, and Data Lake Storage

Describe data encryption and data protection for Azure Storage.   Azure encrypts data 
stored in Azure Storage at rest by default. Azure Storage also encrypts data in transit using 
TLS and allows organizations to enforce a minimum required version of TLS for requests 
made to the storage account. Azure Storage also protects data from being deleted or modi-
fied with the following features: soft delete, blob versioning, and immutability policies.

Describe management tools for Azure Storage.   The DP-900 exam covers several tools 
that can be used to manage data in Azure Storage. AzCopy is a command-line tool that is 
used to migrate data from on-premises or cloud storage to an Azure storage account. Azure 
Storage Explorer is a desktop tool that can be used to manage storage account resources. 
Remember that Azure Storage Explorer uses AzCopy to upload data. Azure Data Factory is 
an orchestration tool that can be used to move data to Azure Storage as a part of an ETL 
pipeline. Finally, Azure Data Box is a physical device that organizations can use to move 
large amounts of data (more than 40 TB) to Azure Storage.



Review Questions  221

Review Questions
1.	 Which of the following types of data can be stored in Azure Storage?

A.	 Unstructured

B.	 Structured

C.	 Semi-structured

D.	 All of the above

2.	 Which of the following redundancy options is not available for premium tier 
storage accounts?

A.	 Local redundant storage.

B.	 Geo-redundant storage.

C.	 Zone-redundant storage.

D.	 All of these are available redundancy options for premium storage accounts.

3.	 As the Azure administrator for your company, you are responsible for creating a storage 
system that replaces the existing SMB file share that is used by developers. The solution must 
be able to provide quick access to files that are frequently used and offload the storage of 
files that are not frequently used to the cloud. Which of the following solutions meets this 
requirement?

A.	 Create an Azure file share and set up Azure File Sync on a Windows Server device.

B.	 Create an Azure file share and mount the share to an on-premises network drive.

C.	 Create an Azure Blob Storage container and mount the container to an on-premises net-
work drive.

D.	 Create an Azure file share and set up Azure File Sync on a Linux device.

4.	 What port needs to be opened to allow SMB communication to an Azure file share if there is 
not an established Azure VPN or ExpressRoute to tunnel SMB traffic to the share?

A.	 445

B.	 443

C.	 1433

D.	 2049

5.	 Which blob type is used by Azure VMs for disk storage?

A.	 Block blob

B.	 Append blob

C.	 Page blob

D.	 Disk blob



222  Chapter 4  ■  File, Object, and Data Lake Storage

6.	 You are designing an Azure Blob Storage solution to serve as the backend for a big data 
processing solution. Initially, the data must be available to be processed and analyzed with 
minimal latency. Once the raw data is processed and is no longer useful, it must be main-
tained for compliance reasons. Which of the following options should you implement to cre-
ate the most cost-effective storage solution?

A.	 Initially store the raw data using the hot access tier and then use a life cycle management 
policy to move the raw data to the cool access tier once it is processed.

B.	 Initially store the raw data using the hot access tier and then use a life cycle management 
policy to move the data to the archive access tier once it is processed.

C.	 Initially store the data using the transaction optimized access tier and then use a life 
cycle management policy to move the raw data to the cool access tier once it is pro-
cessed.

D.	 Initially store the data using the transaction optimized access tier and then use a life 
cycle management policy to move the raw data to the archive access tier once it is pro-
cessed.

7.	 When selected, which of the following features will enable ADLS for Azure Blob Storage?

A.	 Hierarchical namespace

B.	 File share

C.	 Directory namespace

D.	 Premium

8.	 What is the recommended Azure PowerShell command to use when creating a reference to an 
existing storage account?

A.	 Get-AzureRmStorageAccount
B.	 Get-AzStorageAccount
C.	 Get-AzureStorageAccount
D.	 Get-AzRmStorageAccount

9.	 You are designing a storage account that will be used to store personally identifiable 
information. What network isolation solution should you use to ensure that the storage 
account is properly secured?

A.	 Use the public endpoint with the IP firewall to restrict access to specific IP addresses.

B.	 Use the public endpoint and restrict access to specific Azure subnets.

C.	 Use a private endpoint to attach a private IP address from a VNet to the storage 
account. This will restrict storage account access to applications that can communicate 
with the VNet.

D.	 Use a private endpoint with the IP firewall to restrict access to specific IP addresses.



Review Questions  223

10.	 You are an Azure administrator for a sports team and are working with the team’s data engi-
neering department to design an Azure Blob Storage repository for all of the team’s historical 
statistics. Analysts must be able to read data from the blob containers but must not be able to 
write new data or delete existing data. Which of the following access management solutions 
should you implement?

A.	 Storage Blob Data Contributor

B.	 Reader

C.	 Contributor

D.	 Storage Blob Data Reader

11.	 Your organization is preparing to move its existing data estate to Azure Storage. The scope of 
the migration will include 50 TBs of historical data and media files. All the data needs to be 
migrated at once without taking a lot of time. Which of the following solutions should you 
use to perform this migration?

A.	 AzCopy

B.	 Azure Data Box

C.	 Azure Data Factory

D.	 Azure Storage Explorer

12.	 Which of the following Azure resources can you connect to in Azure Storage Explorer?

A.	 Subscriptions

B.	 Storage accounts

C.	 Blob containers

D.	 All of the above





Modern Data 
Warehouses in Azure

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe analytical workloads.

■■ Describe transactional workloads.

■■ Describe the difference between a transactional and an analyt-

ical workload.

■■ Describe the difference between batch and real time.

■■ Describe data warehousing workloads.

■■ Describe when a data warehouse solution is needed.

✓✓ Describe the components of a modern data warehouse.

■■ Describe Azure data services for modern data warehousing 

such as Azure Data Lake, Azure Synapse Analytics, Azure Data-

bricks, and Azure HDInsight.

■■ Describe modern data warehousing architecture 

and workload.

✓✓ Describe data ingestion and processing on Azure.

■■ Describe common practices for data loading.

■■ Describe the components of Azure Data Factory (e.g., pipeline, 

activities, etc.).

■■ Describe data processing options (e.g., Azure HDInsight, Azure 

Databricks, Azure Synapse Analytics, Azure Data Factory).

Chapter 

5



Chapter 1, “Core Data Concepts,” and Chapter 2, “Relational 
Databases in Azure,” examine the fundamental concepts of 
analytical workloads, including common definitions and design 

patterns. This chapter expands on these concepts by exploring the various components that 
can be involved in Azure-based analytical workloads. These components include services 
that are involved in ingesting and processing data and storage options for a modern data 
warehouse.

Analytical Workload Features
Throughout this book we have covered the features and design considerations used by dif-
ferent workload types. For this reason, the following sections will only provide a summary 
of the different workload types. The important takeaway for this chapter is how analytical 
workloads differentiate from transactional ones and how batch and stream processing are 
used in a modern data warehouse solution. Understanding these features will set the stage 
for the rest of the chapter when we examine how to build modern data warehouses in Azure.

Transactional vs. Analytical Workloads
Analytical workloads can be built using many of the same technologies and components as 
transactional workloads. However, there are several design practices and features that are 
more optimal for one over the other. When designing a modern data warehouse, it is impor-
tant to consider what sets analytical and transactional workloads apart.

Transactional Workload Features
As discussed in Chapter 1, “Core Data Concepts,” online transaction processing (OLTP) sys-
tems capture the business transactions that support the data-to-day operations of a business. 
Data stores that are used for OLTP systems must be able to handle millions of transactions 
a day while ensuring that none of the data is corrupted. Traditionally, OLTP systems have 
always been hosted on relational databases as these platforms implement ACID properties to 
ensure data integrity.

Relational databases supporting OLTP systems are highly normalized, typically follow-
ing third normal form (3NF), separating related data into multiple tables to eliminate data 
redundancy. This design standard ensures that database tables are optimized for write oper-
ations. While this level of normalization is ideal for write operations, it is less efficient for 



Analytical Workload Features  227

analytical workloads that perform read-heavy operations. Analysts who have built reports 
from databases that are designed for OLTP workloads will inevitably be forced to write 
complicated queries that use several join operations to create the desired result set. This can 
lead to bad performance and concurrency issues with write operations.

Before examining features and best practices for analytical workloads, it is important 
to note that not all OLTP workloads are suitable for highly normalized, relational data-
bases. Transactional data that is produced in large volumes and at high speeds can take a 
performance hit when being conformed to a fixed, normalized schema. In these cases, orga-
nizations can choose to host their transactional workloads on NoSQL document databases 
such as the Azure Cosmos DB Core (SQL) API. These databases store data in its original 
state as semi-structured documents, enabling transactions to be written to them very quickly.

While document databases are extremely efficient data stores for large volume and high 
velocity write operations, the lack of a consistent structure makes them difficult to use with 
analytical applications like reporting tools. Useful data fields are typically extrapolated 
from semi-structured NoSQL documents and stored in a format that is optimized for read-
heavy operations. Several modern analytical services can also leverage data virtualization 
techniques to structure data for reporting applications while leaving the data in its source 
data store.

Analytical Workload Features
Analytical workloads are designed to help business users make data-driven decisions. These 
systems are used to answer several questions about the business: What has happened over 
the previous period? Why did particular events happen? What will happen if all things stay 
the same? What will happen if we make specific changes in different areas? As discussed in 
Chapter 1, these questions are answered by the different types of analytics that make up the 
analytics maturity model.

Remember that the analytics maturity model includes descriptive, diag-
nostic, predictive, prescriptive, and cognitive analytics.

Data-driven business decisions come from extracting useful information from several 
source data stores, including OLTP databases. Once extracted, source data will typically 
undergo several transformation steps to remove extraneous features and remediate data 
quality issues. Cleansed data is then conformed to an easy-to-use data model for analytics. 
Data that is ready to be analyzed is stored in a relational data warehouse, an OLAP model, 
or as files in an enterprise data lake.

Reporting applications and analytical applications used to analyze historical data typi-
cally retrieve data from read optimized data stores such as a data warehouse or an OLAP 
model. Many of these systems offer in-memory and column-based storage capabilities that 
are optimal for analytical queries that aggregate large amounts of data. Data warehouses 
and department-specific data marts are built with relational databases like Azure Synapse 
Analytics dedicated SQL pools or Azure SQL Database. Unlike OLTP data stores that are 



228  Chapter 5  ■  Modern Data Warehouses in Azure

built with relational databases, data warehouses use a denormalized data model. The sec-
tion “Data Modeling Best Practices for Data Warehouses” later in this chapter covers this 
approach in further detail.

While most analytical workloads store processed data used by reporting applications in a 
relational data warehouse such as Azure Synapse Analytics dedicated SQL pools or an OLAP 
tool such as Azure Analysis Services, many organizations choose to store data used by data 
scientists as files in an enterprise data lake. Cloud-based data lakes such as Azure Data Lake 
Store Gen2 (ADLS) can store massive amounts of data much cheaper than a relational data 
warehouse. Data lakes can also store large amounts of unstructured data such as images, 
video, and audio that data scientists can leverage with deep learning techniques. Data archi-
tects can take advantage of these capabilities by providing data scientists with large volumes 
and several types of data that they can use to build insightful machine learning models.

Modern cloud-based analytical workloads typically use a combination of an enterprise 
data lake and a data warehouse. Relational database engines used to host data warehouses 
offer faster query performance, higher user concurrency, and more granular security than 
data lake technologies. On the other hand, data lake services can host unlimited amounts 
data at a much cheaper cost, allowing users to store multiple copies of data to leverage for 
several different use cases. Data lakes can also store a wide variety of data, allowing users 
to interact with semi-structured and unstructured data with relative ease. This is why most 
organizations store all of their data in an enterprise data lake and only load data that is 
necessary for reporting from the data lake into a data warehouse.

Separating where data is located so reports retrieve data from a data 
warehouse or OLAP model and so data scientists use data in a data lake 
will eliminate concurrency issues that may have been caused by these 
workloads using data from the same data store. This will help optimize 
the performance of these workloads.

In recent years, several technologies have been introduced that are optimized for ad hoc 
analysis with data stored in a data lake. By storing data using a columnar format such as 
Parquet, analysts can leverage data virtualization technologies such as Azure Synapse Ana-
lytics serverless SQL pools to query their data with T-SQL without having to create a sep-
arate copy of the data in a relational database. Data engineers can also store data in ADLS 
with Delta Lake. Delta Lake is an open-source storage layer that enables ACID properties 
on Parquet files in ADLS. This ensures data integrity for data stored in ADLS, perfect for ad 
hoc analysis and data science initiatives. More information about Delta Lake and the “Lake-
house” concept can be found at https://delta.io.

While using a data lake like a data warehouse can serve as a relational database 
replacement with smaller workloads, large reporting workloads that analyze data from sev-
eral sources can benefit from the performance of a relational database. You can find more 
information about the benefits of using a relational data warehouse and a data lake together 
in the following blog post from James Serra: www.jamesserra.com/archive/2020/09/
data-lakehouse-synapse.

https://delta.io
https://www.jamesserra.com/archive/2020/09/data-lakehouse-synapse
https://www.jamesserra.com/archive/2020/09/data-lakehouse-synapse


Analytical Workload Features  229

Data used by analytical workloads have to go through a data processing workflow before 
it eventually lands in a data lake and/or a data warehouse. Even if the data does not undergo 
any transformations, it still needs to be extracted and loaded into a destination data store. 
Data engineers can use one or a combination of the following data processing techniques to 
create an end-to-end data pipeline: batch processing and stream processing.

Data Processing Techniques
Batch and stream processing are two data processing techniques that are used to manipulate 
data at rest and in real time. As discussed in Chapter 1, these techniques can be leveraged 
together in modern data processing architectures such as the Lambda architecture. This 
empowers organizations to make decisions with a wide variety of data that is generated at 
different speeds. Let’s examine each of these techniques further in the following sections 
before exploring how they can be used in the same solution.

Batch Processing
Batch processing activities act on groups, or batches, of data at predetermined periods 
of time or after a specified event. One example of batch processing is a retail company 
processing daily sales every night and loading the transformed data into a data warehouse. 
The following list included reasons for why you would want to use batch processing:

■■ Working with large volumes of data that require a significant amount of compute power 
and time to process

■■ Running data processing activities during off-hours to avoid inaccurate reporting

■■ Processing data every time a specific event occurs, such as a blob being uploaded to 
Azure Blob storage

■■ Transforming batches of semi-structured data, such as JSON or XML, into a structured 
format that can be loaded into a data warehouse

■■ Processing data that is related to business intervals, such as yearly/quarterly/monthly/
weekly aggregations

Data architects can implement batch processing activities using one of two techniques: 
extract, transform, and load (ETL) or extract, load, and transform (ELT). ETL pipelines 
extract data from one or more source systems, transform the data to meet user specifications, 
and then load the data in an analytical data store. ELT processes flip the transform and load 
stages and allow data engineers to transform data in the analytical data store. Because the 
ELT pattern is optimized for big data workloads, the analytical data store must be capable 
of working on data at scale. For this reason, ELT pipelines commonly use MPP technologies 
like Azure Synapse Analytics as the analytical data store.

Batch processing workflows in the cloud generally use the following components:

■■ Orchestration engine—This component manages the flow of a data pipeline. It handles 
when and how a pipeline starts, extracting data from source systems and landing it in 
data lake storage, and executing transformation activities. Developers can also leverage 



230  Chapter 5  ■  Modern Data Warehouses in Azure

error handling logic in the orchestration engine to control how pipeline activity errors 
are managed. Depending on the design, orchestration engines can also be used to move 
transformed data into an analytical data store. Azure Data Factory (ADF) is a common 
service used for this workflow component.

■■ Object storage—This is a distributed data store, or data lake, that hosts large amounts of files 
in various formats. Developers can use data lakes to manage their data in multiple stages. 
This can include a bronze layer for raw data extracted directly from the source, a silver layer 
that represents the data after being scrubbed of any data quality issues, and a gold layer that 
stores an aggregated version of the data that has been enriched with domain-specific business 
rules. ADLS or Azure Blob Storage can be used for this workflow component.

■■ Transformation activities—This is a computational service that is able to process long-
running batch jobs to filter, aggregate, normalize, and prepare data for analysis. These 
activities read source data from data lake storage, process it, and write the output back 
to data lake storage or an analytical data store. Azure Databricks, Azure HDInsight, 
Azure Synapse Analytics, and ADF mapping data flows are just a few examples of com-
pute services that can transform data.

■■ Analytical data store—This is a storage service that is optimized to serve data to analyt-
ical tools such as Power BI. Azure services that can be used as an analytical data store 
include Azure Synapse Analytics and Azure SQL Database.

■■ Analysis and reporting—Reporting tools and analytical applications are used to create 
infographics with the processed data. Power BI is one example of a reporting tool used 
in a batch processing workflow.

Figure 5.1 illustrates an example of a batch processing workflow that uses ADF to extract 
data from a few source systems, lands the raw data in ADLS, processes the data with a 
combination of Azure Databricks and ADF mapping data flows, and finally loads the pro-
cessed data into an Azure Synapse Analytics dedicated SQL pool.

Object Storage

Orchestration

Analytical Data Store Reporting

Power BI

Transformation
Activities

Azure Data
Lake Storage

Gen2

Azure
Databricks

Azure Data
Factory

Mapping
Data Flows

Azure 
Synapse
Analytics

Azure Data
Factory

Source Data

Logs
(unstructured)

Media
(unstructured)

Files
(unstructured)

Business/custom
apps (structured)

F IGURE 5 .1   Batch processing example



Analytical Workload Features  231

Stream Processing
Stream processing is a data processing technique that involves ingesting a continuous stream 
of data and performing computations on the data in real time. It is used for processing sce-
narios that have very short latency requirements, typically measured in seconds or millisec-
onds. Data that is ready for analysis is either sent directly to a dashboard or loaded into a 
persistent data store such as ADLS or Azure Synapse Analytics dedicated SQL pool for long-
term analysis. Some examples of stream processing are listed here:

■■ Analyzing click-stream data to make recommendations in real-time

■■ Observing biometric data with fitness trackers and other IoT devices

■■ Monitoring offshore drilling equipment to detect any anomalies that indicate it needs to 
be repaired or replaced

Cloud-based stream processing workflows generally use the following components:

■■ Real-time message ingestion—This component captures data as messages in real time 
from different technologies that generate data streams. Azure Event Hubs and Azure IoT 
Hub are two PaaS offerings that data architects can use for real-time message ingestion. 
Several organizations leverage Apache Kafka, a popular open-source message ingestion 
platform, to process data streams. Organizations can move their existing Kafka work-
loads to Azure with the Azure HDInsight Kafka cluster type or the Azure Events for 
Kafka protocol.

■■ Stream processing—This component transforms, aggregates, and prepares data streams 
for analysis. These technologies can also load data in persistent data stores for long-term 
analysis. Azure Stream Analytics and Azure Functions are two PaaS offerings that data 
engineers can use to receive data from a real-time ingestion services and apply computa-
tions on the data.

■■ Apache Spark—This is a popular open-source data engineering platform that supports 
batch and stream processing. Stream processing is performed with the Spark structured 
streaming service, a processing service that transforms data streams as micro-batches in 
real time. Spark structured streaming jobs can be developed with Azure Databricks, the 
Azure HDInsight Spark cluster type, or an Azure Synapse Analytics Apache Spark pool. 
The collaborative nature and ease of use with Azure Databricks makes it the preferred 
service for Spark structured streaming jobs.

■■ Object storage—Data streams can be loaded into object storage to be archived or 
combined with other datasets for batch processing. Stream processing services can use 
an object store such as ADLS or Azure Blob Storage as a destination, or sink, data store 
for processed data. Some real-time ingestion services such as Azure Event Hubs can load 
data directly into object storage without the help of a stream processing service. This is 
useful for organizations that need to store the raw data streams for long-term analysis.

■■ Analytical data store—This is a storage service that serves processed data streams 
to analytical applications. Azure Synapse Analytics, Azure Cosmos DB, and Azure 
Data Explorer are services in Azure that can be used as an analytical data store for 
data streams.



232  Chapter 5  ■  Modern Data Warehouses in Azure

■■ Analysis and reporting tools—Processed data can be written directly to a reporting tool 
such as a Power BI dashboard for instant analysis.

As discussed in Chapter 1, stream processing workflows can use one of two approaches: 
live or on demand. The “live” approach is the most commonly used pattern, processing data 
continuously as it is generated. The “on-demand” approach persists incoming data in object 
storage and processes it in micro-batches. An example of this approach is illustrated in 
Figure 5.2.

Modern Data Solutions with Batch and Stream Processing
Azure data services make it easy for data architects to use batch and stream processing 
workflows in the same solution. This flexibility gives business units the ability to quickly 
make well informed decisions from their data. These cloud-native solutions are designed 
with modern data processing patterns like the Lambda architecture.

The Lambda architecture is a data processing pattern that provides a framework for how 
users can use a combination of batch and stream processing for data analysis. Solutions that 
use the Lambda architecture separate batch and stream processing operations into a cold 
and hot path. Figure 5.3 illustrates the components and process flow used by the Lambda 
architecture.

The cold path, also known as the batch layer, manages all operations that are not con-
strained by low latency requirements. Batch layer operations typically process large datasets 
at predetermined periods of time. Once processed, data is loaded into the serving layer (e.g., 
an analytical data store like Azure Synapse Analytics) to be analyzed by reporting and ana-
lytical applications.

The hot path, also known as the speed layer, manages stream processing operations. 
Data is immediately processed and is either directly sent to a reporting application for 
instant analysis or loaded into the serving layer and combined with data processed in the 
batch layer.

Azure
Data Lake

Thermostat Azure
Event Hub

Azure
Stream

Analytics

Azure
SQL

Database

Power BI
Streaming
Dashboard

SQL

F IGURE 5 .2   On-demand stream processing example



Modern Data Warehouse Components  233

Modern Data Warehouse Components
Modern data warehouse solutions are more than just a simple analytical data store. They 
are made up of several components that give users flexible options for how they can analyze 
their data. Technologies used by modern data warehouse solutions are designed to scale hor-
izontally as well as vertically, meaning that they can process and store very large datasets. 
Modern computing paradigms that enable these technologies to manage large and diverse 
datasets have also led to more dynamic design patterns. As discussed previously in this 
chapter, modern data warehouse solutions can combine batch and stream processing work-
flows with the Lambda architecture.

Cloud platforms such as Azure make building these solutions more accessible than ever 
before. Instead of having to procure hardware and spend the time configuring distributed 
services such as Hadoop or Spark to work in an on-premises environment, users can quickly 
deploy services that are designed to be core components of a modern data warehouse solu-
tion. Azure’s pay-per-use cost model and the ability to quickly scale or delete services allow 
organizations to test different modern data warehouse components by completing short 
projects known as proofs of concept (POCs). POCs enable users to evaluate critical design 
decisions without having to make any large upfront hardware commitments.

The following sections explore data modeling best practices for the most commonly used 
Azure services for modern data warehouse solutions.

Data Modeling Best Practices for Data Warehouses
Data warehouses are data management systems that support analytical workloads and 
business intelligence (BI) activities. Data managed by a data warehouse is derived from 

Batch Source
Systems

Batch Layer Serving Layer

Cold Path

Stream Source
Systems Speed Layer

Analytics and
Reporting

Hot Path

F IGURE 5 .3   Lambda architecture workflow



234  Chapter 5  ■  Modern Data Warehouses in Azure

several sources, such as OLTP systems, web APIs, IoT devices, and social media networks. 
Unlike OLTP systems, data warehouses use data models that are read-optimized so ana-
lytical queries issued against them can efficiently return aggregated calculations to support 
business decisions.

As discussed in Chapter 2, data warehouses use denormalized data models that are opti-
mized for analytical queries and read-heavy workloads. The most common design practice 
for this approach is the star schema. Star schemas denormalize business data to minimize the 
number of tables in the data model. Tables consist of business entities and measurable events 
that are related to those entities. This division of data categories is represented by the two 
types of tables defined in the star schema: dimension tables and fact tables.

Dimension tables contain information that describes a particular business entity. These 
tables are typically very wide, containing several descriptor columns and a key column 
that serves as a unique identifier. Some common entities that are stored as dimension tables 
include date, customer, product category, and product subcategory information. In all of 
these cases, there could be a relatively small number of rows but a large number of columns 
to provide as much descriptive information as possible.

Fact tables store quantifiable observations that are related to the dimension tables. These 
tables can grow to be very large, comprising several millions of rows related to specific 
measurable events. Some fact table examples include Internet sales, product inventory, and 
weather metrics. Fact tables also include foreign key columns that are used to establish rela-
tionships with dimension tables. These relationships determine the level of granularity that 
analytical queries can use when filtering fact table data. For example, a query that is filtering 
an Internet sales fact table by a date dimension can only return time slices for the level of 
detail contained in the date dimension.

Azure Services for Modern Data Warehouses
In the Azure ecosystem there are several services that can be used to build a modern data 
warehouse solution. Depending on the scenario and the skillset of the engineers building the 
solution, most Azure services can be used to build different components of a data processing 
pipeline. However, there is a set of core Azure data services that are specifically designed to 
process big data workloads:

■■ Azure Data Factory

■■ Azure HDInsight

■■ Azure Databricks

■■ Azure Synapse Analytics

Each of these services can perform a variety of different functions in a data processing 
pipeline. This versatility allows them to be used in various stages of ETL or ELT pipelines. 
They have the flexibility to manage data in a variety of different formats and can scale hori-
zontally as well as vertically to process very large volumes of data.

First, let’s examine how Azure HDInsight, Azure Databricks, and ADF are used in 
modern data warehouse solutions. End-to-end data processing solutions with Azure Synapse 



Modern Data Warehouse Components  235

Analytics will be described in the section “End-to-End Analytics with Azure Synapse Ana-
lytics” later in this chapter.

It is important to note that object storage services like Azure Data Lake 
Storage Gen2 (ADLS) are critical components to any modern data ware-
house solution. While the services described in the following sections 
are responsible for data transformation and data movement operations, 
ADLS’s scalability, cost-effectiveness, and ease-of-use allow data engi-
neers to use these services to iterate over data several times and store 
processed data in multiple phases (such as bronze, silver, and gold) 
without ever worrying about storage constraints.

Azure HDInsight
Azure HDInsight is a managed, open-source analytics service in Azure. With Azure  
HDInsight, you can deploy distributed clusters for Apache Hadoop, Apache Spark, Apache 
Interactive Query/LLAP (Live Long and Process), Apache Kafka, Apache Storm, and Apache 
HBase in Azure. Being able to quickly stand up these environments without having to pro-
cure and manage hardware reduces the barriers to entry for organizations who are beginning 
to build a modern data warehouse.

Open-source frameworks like Hadoop and Spark are designed to handle large-scale data 
processing activities by using a scale-out architecture. While they can be installed on a single 
server node for test purposes, most use cases leverage multiple server nodes that are clustered 
together to perform processing activities at scale. Clusters consist of a head/driver node that 
divides jobs into smaller tasks and one or more worker nodes that execute each task.

Distributed frameworks also rely on resource managers like Apache Hadoop YARN (Yet 
Another Resource Negotiator) to manage cluster resources and job scheduling. Resource 
managers designate compute resources (such as CPU, memory, IO) to cluster nodes and 
monitor the resource usage. Knowing details of how YARN and other resource managers 
are designed is beyond the scope of the DP-900 exam and this book, but you can find more 
information at the following link if you would like to learn more: https://hadoop 
.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

Azure HDInsight makes it easy to manage distributed frameworks like Hadoop and Spark 
and offers the capability to customize a cluster deployment, such as adding new components 
and languages. Also, since Azure HDInsight is a PaaS service, you can easily scale the number of 
worker nodes allocated to cluster up or down to increase compute power or cut back on cost.

It is important to understand the different Azure HDInsight cluster types and when you 
should use them. Also, keep in mind that after you have deployed an Azure HDInsight 
cluster, you will not be able to change the cluster type. For this reason, it is critical that you 
understand the scenarios the cluster will be supporting. The following list describes each of 
the cluster types supported by Azure HDInsight:

■■ Apache Hadoop is an open-source technology for distributed data processing. It uses 
the MapReduce parallel processing framework to process data at scale and the Hadoop 

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html


236  Chapter 5  ■  Modern Data Warehouses in Azure

Distributed File System (HDFS) as a distributed storage system. MapReduce jobs divide 
compute jobs into smaller units of work to be run in parallel across the various nodes 
in a cluster. Users can also leverage Apache Hive with Hadoop to project a schema 
on data and query data using HiveQL. More information about Apache Hive can be 
found at https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/
hdinsight-use-hive.

One drawback to Hadoop is that it only supports batch processing, forcing users 
to leverage another service like Apache Storm or Apache Spark for distributed stream 
processing. Hadoop also reads and writes data from and to disk, potentially leading 
to poorer processing performance than Apache Spark, which supports in-memory 
processing.

■■ Apache Spark is an open-source, distributed processing framework that supports in-
memory processing. Because of its speed, Spark has become the standard framework for 
batch and stream distributed processing activities over Hadoop. Apache Spark also sup-
ports interactive querying capabilities, allowing users to easily query data from distrib-
uted data stores like ADLS with popular development languages like Spark SQL. More 
Spark-specific features such as development languages, workflows, and best practices 
will be described in the section “Azure Databricks.”

■■ Apache Kafka is an open-source, distributed real-time data ingestion platform that is 
used to build stream processing data pipelines. It offers message broker functionality 
that allows users to publish and subscribe to data streams.

■■ Apache HBase is an open-source NoSQL database that is built on top of Apache 
Hadoop. It uses a columnar format to store rows of data as column families, similar to 
the Azure Cosmos DB Cassandra API. Developers can interact with HBase data using 
Hive queries.

■■ Apache Storm is an open-source, real-time processing system for processing large data 
streams very quickly. Similar to Hadoop and Spark, it uses a distributed framework to 
parallelize stream processing jobs.

■■ Apache Interactive Query is an open-source, in-memory caching service for interactive 
and faster Hive queries. This cluster type can be used by developers or data scientists to 
easily run Hive queries against large datasets stored in Azure Blob Storage or ADLS.

As with any service in Azure, you can configure and deploy an Azure HDInsight cluster 
through the Azure Portal, through an Azure PowerShell or Azure CLI script, or via an Infra-
structure as Code template like ARM or Bicep. Creating an Azure HDInsight cluster in Azure 
deploys the service chosen as the cluster type, the Apache Hadoop YARN resource manager 
to manage cluster resources, and several popular open-source tools such as Ambari, Avro, 
Hive, Sqoop, Tez, Pig, and Zookeeper. This greatly reduces the time it takes to get started 
building distributed solutions.

Most modern data warehouse scenarios leverage Apache Spark over Apache Hadoop, 
Apache Storm, and Apache Interactive Query to process large datasets due to its speed, 
ability to perform batch and stream processing activities, number of data source connectors, 

https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/hdinsight-use-hive
https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/hdinsight-use-hive


Modern Data Warehouse Components  237

and overall ease of use. As a matter of fact, ADF mapping data flows use Apache Spark clus-
ters to perform ETL activities. Apache Spark also enables data scientists and data analysts to 
interactively manipulate data concurrently.

There are a few management aspects that must be considered when deploying an Azure 
HDInsight cluster:

■■ Once provisioned, Azure HDInsight clusters cannot be paused. This means that you will 
need to delete the cluster if you want to save on costs when clusters are not being used. 
Organizations typically use an automation framework like Azure Automation to delete 
their clusters with Azure PowerShell or Azure CLI once they have finished running. 
They can then redeploy the cluster using an automation script or an Infrastructure as 
Code template.

■■ The lack of a pause feature for clusters creates a dilemma for metadata management. 
Azure HDInsight clusters use an Azure SQL Database as a central schema repository, also 
known as a metastore. The default metastore is tied to the life cycle of a cluster, meaning 
that when the cluster is deleted, the metastore and all information pertaining to Hive 
table schemas are deleted too. This can be avoided by using your own Azure SQL Data-
base as a custom metastore. Custom metastores are not tied to the life cycle of a cluster, 
allowing you to create and delete clusters without losing any metadata. They can also be 
used to manage the Hive table schemas for multiple clusters. More information about 
custom metastores can be found at https://docs.microsoft.com/en-us/azure/
hdinsight/hdinsight-use-external-metadata-stores#custom-metastore.

■■ Clusters do not support Azure AD authentication, RBAC, and multi-user capabilities 
by default. These services can be integrated by adding the Enterprise Security Package 
(ESP) to your cluster as part of the deployment workflow. More information about the 
ESP can be found at https://docs.microsoft.com/en-us/azure/hdinsight/
enterprise-security-package.

Later in this chapter we will discuss two other Azure services that can be used to build 
Apache Spark clusters. Azure Databricks and Azure Synapse Apache Spark pools are two 
Apache Spark–based analytics platforms that overcome the management overhead pre-
sented by Azure HDInsight. Both services allow you to easily pause (referred to as “termi-
nate” in Azure Databricks) Spark clusters and maintain schema metadata without needing 
a custom external metastore. They are also natively integrated with Azure AD, enabling 
users to leverage their existing authentication/authorization mechanisms. Because of the 
ease of use and the additional components that provide a unified development experi-
ence for data engineers, Azure Databricks and Azure Synapse Analytics are the preferred 
choices for Apache Spark workloads. Reasons to use Azure Databricks instead of Azure 
Synapse Analytics Apache Spark pools and vice versa will be described in the follow-
ing sections.

Azure HDInsight clusters are typically used in scenarios where Azure Databricks and 
Azure Synapse Analytics cannot be used or if Apache Kafka is required. The most common 
example of a scenario where Azure Databricks and Azure Synapse Analytics cannot be used 
is a solution that requires its Azure resources to come from a region that does not support 

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-external-metadata-stores#custom-metastore
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-use-external-metadata-stores#custom-metastore
https://docs.microsoft.com/en-us/azure/hdinsight/enterprise-security-package
https://docs.microsoft.com/en-us/azure/hdinsight/enterprise-security-package


238  Chapter 5  ■  Modern Data Warehouses in Azure

either of these services. Azure Event Hubs also provides an endpoint compatible with 
Apache Kafka that can be leveraged by most Apache Kafka applications as an alternative 
to managing an Apache Kafka cluster with Azure HDInsight. Configuring the Azure Event 
Hubs Kafka endpoint is beyond the scope of the DP-900 exam, but you can find more 
information at https://docs.microsoft.com/en-us/azure/event-hubs/ 
event-hubs-for-kafka-ecosystem-overview if you would like to learn more.

You can use the following site to stay up to date on which regions 
support Azure Databricks and Azure Synapse Analytics: https://azure 
.microsoft.com/en-us/global-infrastructure/services/?regions
=all&products=databricks,synapse-analytics.

Azure Databricks
Apache Spark was developed in 2009 by researchers at the University of California, Berke-
ley. Their goal was to build a solution that overcame the inefficiencies of the Apache Hadoop 
MapReduce framework for big data processing activities. While based off of the MapReduce 
framework for distributing processing activities across several compute servers, Apache 
Spark enhances this framework by performing several operations in-memory. Spark also 
extends MapReduce by allowing users to interactively query data on the fly and create 
stream processing workflows.

The Spark architecture is very similar to the distributed pattern used by Hadoop. At a 
high level, Spark applications can be broken down into the following four components:

■■ A Spark driver that is responsible for dividing data processing operations into smaller 
tasks that are executed by the Spark executors. The Spark driver is also responsible for 
requesting compute resources from the cluster manager for the Spark executors. Clusters 
with multiple nodes host the Spark driver on the driver node.

■■ A Spark session is an entry point to Spark functionality. Establishing a Spark session 
allows users to work with the resilient distributed dataset (RDD) API and the Spark 
DataFrame API. These represent the low-level and high-level Spark APIs that developers 
can use to build Spark data structures.

■■ A cluster manager that is responsible for managing resource allocation for the cluster. 
Spark supports four types of cluster managers: the built-in cluster manager, Apache 
Hadoop YARN, Apache Mesos, and Kubernetes.

■■ A Spark executor that is assigned a task from the Spark driver and executes that task. 
Every worker node in a cluster is given its own Spark executor. Spark executors further 
parallelize work by assigning tasks to a slot on a node. The number of worker node slots 
are determined by the number of cores allocated to the node.

Figure 5.4 illustrates how the components of a Spark application fit into the architecture 
of a three node (one driver and two workers) Spark cluster.

https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://azure.microsoft.com/en-us/global-infrastructure/services/?regions=all&products=databricks
https://azure.microsoft.com/en-us/global-infrastructure/services/?regions=all&products=databricks
https://azure.microsoft.com/en-us/global-infrastructure/services/?regions=all&products=databricks


Modern Data Warehouse Components  239

The Spark Core API enables developers to build Spark applications with several popular 
development languages, including Java, Scala, Python, R, and SQL. These languages have 
Spark-specific APIs, like PySpark for Python and SparkR for R, that are designed to paral-
lelize code operations across Spark executors. The creators of Spark also developed several 
Spark-based libraries designed for a variety of big data scenarios, including MLlib for dis-
tributed machine learning applications, GraphX for graph processing, Spark Structured 
Streaming for stream processing, and Spark SQL + DataFrames for structuring and ana-
lyzing data.

As mentioned earlier, the Spark RDD API and the Spark DataFrame API are used to 
create and manipulate data objects. The RDD API is a low-level API that serves as the 
foundation for Spark programming. An RDD is an immutable distributed collection of data, 
partitioned across multiple worker nodes. The RDD API has several operations that allow 
developers to perform transformations and actions in a parallelized manner. While the Spark 
DataFrame API is used more often than the Spark RDD API, there are still some scenarios 
where RDDs can be more optimal than DataFrames. More information on RDDs can be 
found at https://databricks.com/glossary/what-is-rdd.

The DataFrame API is a high-level abstraction of the RDD API that allows developers 
to use a query language like SQL to manipulate data. Unlike RDDs, DataFrame objects are 
organized as named columns (like a relational database table), making them easy to manip-
ulate. DataFrames are also optimized with Spark’s native optimization engine, the catalyst 
optimizer, a feature that is not available for RDDs. More information on how to get started 

Driver Node

Cluster Manager

Worker Node

Worker Node

Spark Executor

Task 1
Open Slot

Spark Executor

Task 1
Task 2

Spark Application
Spark Driver
Spark Session

F IGURE 5 .4   Apache Spark distributed architecture

https://databricks.com/glossary/what-is-rdd


240  Chapter 5  ■  Modern Data Warehouses in Azure

with the DataFrame API can be found at https://docs.microsoft.com/en-us/azure/
databricks/getting-started/spark/dataframes.

You can learn more about the Spark ecosystem at https://databricks 
.com/spark/about.

In 2013, the creators of Apache Spark founded Databricks, a data and artificial intelli-
gence company that packages the Spark ecosystem into an easy-to-use cloud-native platform. 
The company brands the Databricks service as a “Unified Analytics Platform” that enables 
data engineers, data scientists, and data analysts to work together in the same environment. 
Within a single instantiation of a Databricks environment, known as a workspace, users can 
take advantage of the following features:

■■ Optimized Spark runtime—Databricks uses an enhanced version of the open-source 
Apache Spark runtime, known as the Databricks runtime, that is optimized for 
enterprise workloads. The Databricks runtime includes several libraries used for engi-
neering operations with Spark. Additionally, the Databricks runtime for Machine 
Learning (ML) is optimized for machine learning activities and includes popular 
libraries like PyTorch, Keras, TensorFlow, and XGBoost.

■■ Create and manage clusters—Since Databricks is a cloud-native, PaaS platform, admin-
istrators can easily deploy and manage clusters through the workspace UI. Users can 
choose from several cluster options, including the cluster mode, Databricks runtime ver-
sion, compute server type, and the number of compute nodes. This UI also lets admin-
istrators manually terminate a cluster or specify an inactivity period (in minutes) after 
which they want the cluster to terminate.

■■ Notebooks—Developers can create notebooks in Databricks workspaces that they can 
use to author code. Similar to Jupyter Notebooks, notebooks created in a Databricks 
workspace are web-based interfaces that organize code, visualizations, and text in cells. 
Databricks notebooks can be easily attached to clusters and support collaborative 
development, code versioning, and parameterized workflows. Notebook execution can 
be operationalized and automated with Spark jobs or ADF.

■■ Databricks File System (DBFS)—Like HDFS, DBFS is a distributed file system mounted 
into a Databricks workspace and available on Databricks clusters. DBFS is an abstrac-
tion layer on top of cloud object storage. For example, Azure Databricks uses Azure 
Blob Storage to manage DBFS. Users can mount external object storage (e.g., Azure 
Blob Storage or ADLS) so that they can seamlessly access data without needing to reau-
thenticate. Files can also be persisted to DBFS so that data is not lost after a cluster is 
terminated.

■■ Enterprise security—Databricks workspaces incorporate several industry-standard secu-
rity techniques such as access control, encryption at rest and in-transit, auditing, and 
single sign-on. Administrators can use access control lists (ACLs) to configure access 
permissions for workspace objects (e.g., folders, notebooks, experiments, and models), 
clusters, pools, jobs, and data tables.

https://docs.microsoft.com/en-us/azure/databricks/getting-started/spark/dataframes
https://docs.microsoft.com/en-us/azure/databricks/getting-started/spark/dataframes
https://databricks.com/spark/about
https://databricks.com/spark/about


Modern Data Warehouse Components  241

■■ Delta Lake—Delta Lake is an open-source storage layer that guarantees ACID trans-
actions for data stored in a data lake. Data is stored in Parquet format and Delta Lake 
uses a transaction log to manage schema enforcement and ACID compliancy. Developers 
can use Delta Lake as a unified layer for batch and stream processing activities. Delta 
Lake runs on top of existing cloud object storage infrastructure such as ADLS.

■■ MLflow—MLflow is an open-source Spark platform for managing the end-to-end 
machine learning model. Databricks workspaces provide a fully managed and hosted 
version of MLflow that can be used to track experiments, manage and deploy machine 
learning models, package models in a reusable form, store models in a well-defined reg-
istry, and serve models as REST endpoints for application usage.

Visit https://databricks.com to learn more about the Databricks 
platform.

The Databricks platform can be used on Azure with the Azure Databricks service. Azure 
Databricks is fully integrated with other Azure services such as Azure AD and has connectors 
for several popular Azure data stores such as ADLS, Azure SQL Database, Azure Cosmos 
DB, and Azure Synapse Analytics dedicated SQL pools. Because Azure Databricks natively 
integrates with Azure AD, administrators can use their existing identity infrastructure to 
enable fine-grained user permissions for Databricks objects such as notebooks, clusters, 
jobs, and data.

The platform architecture for Azure Databricks can be broken down into two 
fundamental layers: the control plane and the data plane.

■■ The control plane includes all services that are managed by the Azure Databricks cloud 
and not the cloud subscription of the organization that deployed the Azure Databricks 
workspace. This includes the web application, cluster manager, jobs, job scheduler, note-
books and notebook results, and the hive metastore used to persist metadata.

■■ The data plane is managed by a user’s Azure subscription and is where data manipulated 
by Azure Databricks is stored. Clusters and data stores are included in the data plane.

Spark clusters deployed through Azure Databricks use Azure VMs as cluster nodes. As 
we will discuss in the section “Creating a Spark Cluster with Azure Databricks” later in this 
chapter, users can choose from several different VM types to serve different use cases.

Azure Databricks allows users to create two types of Spark clusters: all-purpose and job. 
All-purpose clusters can be used to analyze data collaboratively with interactive notebooks, 
while job clusters are used to run automated jobs for dedicated workloads. Job clusters are 
brought online when a job is started and terminated when the job is finished.

Azure Databricks Cost Structure

Azure Databricks workspaces can be deployed with one of three price tiers: standard, pre-
mium, or trial. The primary difference between the standard and premium price tiers is that 
role-based access control for workspace objects and Azure AD credential passthrough is only 

https://databricks.com


242  Chapter 5  ■  Modern Data Warehouses in Azure

available with the premium price tier. The trial price tier is a 14-day free trial of the Azure 
Databricks premium price tier.

Pricing for Spark clusters created in Azure Databricks consists of two primary components: 
the cost of the driver and worker node VMs and the processing cost. Processing cost is mea-
sured by the number of Databricks Units (DBUs) consumed during cluster runtime. A DBU 
is a unit of processing capability per hour, billed on per-second usage. You can easily calculate 
the number of DBUs usage by multiplying the total number of cluster nodes by the number of 
hours the cluster was running. For example, a cluster with 1 driver node and 3 worker nodes 
that ran for a total of 2 hours consumed 8 DBUs (that is, 4 nodes × 2 cluster runtime hours).

While the Azure VM cost will remain the same regardless of which price tier the Azure 
Databricks workspace was deployed with, the DBU price will vary. Table 5.1 lists the DBU 
price differences for the standard and premium price tiers.

DBUs can be pre-purchased for either one or three years at a discount 
rate. The purchase tiers and discounts for pre-purchased DBUs can 
be found at https://azure.microsoft.com/en-us/pricing/
details/databricks.

Deploying an Azure Databricks Workspace

You can create an Azure Databricks workspace through any of the Azure deployment 
methods. The easiest way to get started is by creating a workspace through the Azure Portal 
with the following steps:

1.	 Log into portal.azure.com and search for Azure Databricks in the search bar at 
the top of the page. Click Azure Databricks to go to the Azure Databricks page in the 
Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure Databricks 
workspace.

3.	 The Create An Azure Databricks Workspace page includes five tabs to tailor the work-
space configuration. Let’s start by exploring the options in the Basics tab. Just as with 
other services, this tab requires you to choose an Azure subscription, a resource group, 
a name, and a region for the workspace. The final option on this tab requires you to 
choose a price tier. A completed example of this tab can be seen in Figure 5.5.

TABLE 5 .1   Standard and premium tier DBU prices

Workload Standard Tier DBU Price Premium Tier DBU Price

All-Purpose Compute $0.40 DBU/hour $0.55 DBU/hour

Jobs Compute $0.15 DBU/hour $0.30 DBU/hour

Jobs Light Compute $0.07 DBU/hour $0.22 DBU/hour

https://azure.microsoft.com/en-us/pricing/details/databricks
https://azure.microsoft.com/en-us/pricing/details/databricks
http://portal.azure.com


Modern Data Warehouse Components  243

4.	 The Networking tab gives users the ability to configure two optional network security 
settings: secure cluster connectivity (no public IP) and VNet injection.

■■ The secure cluster connectivity setting is a simple Yes/No radio dial. If you select 
Yes, your cluster nodes will not be allocated any public IP addresses and all ports on 
the cluster network will be closed. This is regardless of whether it’s the Databricks 
managed VNet or a customer VNet configured through VNet injection. This makes 
network administration easier while also enhancing network security for Azure 
Databricks clusters.

■■ The VNet injection setting gives users the ability to use one of their VNets as the 
network cluster resources are associated with. This enables you to easily connect 
Azure Databricks to other Azure services in a more secure way using service end-
points or private endpoints, connect to on-premises data sources with user-defined 
routes, and configure Azure Databricks to use a custom DNS. If you select Yes, 
you will be prompted to select a VNet and delegate two of the VNets’ subnets to 
be exclusively used by Azure Databricks. The first subnet will be used as the host 
subnet, and the second will be used as the container subnet. The host subnet is 
the source of each cluster node’s IP address, and the container subnet is the source 
of the IP address for the Databricks runtime container that is deployed on each 
cluster node. The host subnet is public by default, but if secure cluster connec-
tivity is enabled, the host subnet will be private. The container subnet is private by 
default. Figure 5.6 is an example of the Networking tab with secure cluster con-
nectivity and VNet injection enabled. The example subnet ranges have been left for 
security reasons. A subnet range of /26 is the smallest recommended subnet size for 
both subnets.

 More information about security cluster connectivity and VNet injection 
can be found at https://docs.microsoft.com/en-us/azure/ 
databricks/security/secure-cluster-connectivity and 
https://docs.microsoft.com/en-us/azure/databricks/
administration-guide/cloud-configurations/azure/ 
vnet-inject.

F IGURE 5 .5   Create an Azure Databricks workspace: Basics tab.

https://docs.microsoft.com/en-us/azure/databricks/security/secure-cluster-connectivity
https://docs.microsoft.com/en-us/azure/databricks/security/secure-cluster-connectivity
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject
https://docs.microsoft.com/en-us/azure/databricks/administration-guide/cloud-configurations/azure/vnet-inject


244  Chapter 5  ■  Modern Data Warehouses in Azure

5.	 The Advanced tab allows you to enable infrastructure encryption to data stored in 
DBFS. Keep in mind that Azure encrypts storage account data at rest by default, so this 
option adds a second layer of encryption to the storage account.

6.	  The Tags tab allows you to place tags on the resources deployed with Azure Databricks. 
Tags are used to categorize resources for cost management purposes.

7.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for Azure Data-
bricks, click the Create button to begin deploying the workspace.

Once the Azure Databricks workspace is deployed, go back to the Azure Databricks page, 
and click on the newly created workspace. Click on the Launch Workspace button in the 
middle of the overview page to navigate to the workspace UI and start working within the 
Databricks ecosystem. Figure 5.7 is an example of what this button looks like.

F IGURE 5 .7   Launch Workspace button

F IGURE 5 .6   Create an Azure Databricks workspace: Networking tab.



Modern Data Warehouse Components  245

A new browser window will open after you click the Launch Workspace button, prompt-
ing you to sign in with your Azure AD credentials. Once you are signed in, you will be 
brought to the Azure Databricks web application where you can begin working with Data-
bricks. The next section describes the key components of the web application.

Navigating the Azure Databricks Workspace UI

The home page for an Azure Databricks workspace serves as a location for users to start 
working with Databricks. Figure 5.8 is an example of the Azure Databricks web application 
home page.

As you can see in Figure 5.8, there are common task options such as creating a new note-
book and importing data. There are also quick navigation links to recently worked on note-
books, Spark documentation, and helpful blog posts.

On the left side of the page is a toolbar with several buttons. The number of buttons in 
the toolbar varies based on which persona is chosen. Azure Databricks personas include 
Data Science & Engineering, Machine Learning, and SQL. You can change the persona by 
clicking the icon below the Databricks logo in the toolbar. Figure 5.9 illustrates this icon and 
the different options that can be selected from it.

For the purposes of this book and the DP-900 exam, we will only cover the Data Science 
& Engineering persona. Of the 13 buttons that are under the Data Science & Engineering 
persona icon, the first 8 buttons are the most relevant to building solutions in Azure Data-
bricks, including the following:

■■ The Create button opens a pop-up window that allows you to create a new notebook 
or DBFS table. It also provides quick navigation to pages where you can create a new 
cluster or a new job.

F IGURE 5 .8   Azure Databricks home page



246  Chapter 5  ■  Modern Data Warehouses in Azure

■■ The Workspace button opens a tab that contains a hierarchical view of the folders and 
files stored in the workspace. Administrators can use this view to set permissions and 
import/export folders or files. Usernames act as parent folders (typically Azure AD iden-
tities), and users associated with those usernames can add new items to them. Items 
that users can create from this view include notebooks, libraries, MLflow experiments, 
and additional subfolders. Figure 5.10 is an example of how the Workspace tab is 
constructed.

■■ The Repos button opens a tab that enables developers to create code repositories for 
their notebooks. Databricks automatically maintains a repository for every user with its 
native Databricks Repos service. Users can also create shared code repositories for col-
laborative development efforts. Databricks also supports other Git providers, including 
GitHub, Bitbucket, GitLab, and Azure DevOps, allowing developers to maintain their 
code repositories in a single service.

■■ The Recents button opens a tab that maintains the most recently worked on notebooks.

■■ The Search button opens a tab that allows users to search for different items in the 
workspace.

■■ The Data button opens a hierarchical view of the catalogs, databases, and tables created 
for each cluster. The metadata for these objects are maintained while a cluster is termi-
nated, allowing developers to easily continue where they left off once the cluster is back 

F IGURE 5 .10   Azure Databricks Workspace tab

F IGURE 5 .9   Azure Databricks workspace personas



Modern Data Warehouse Components  247

online. Depending on how they are defined, tables can be either global or local. Global 
tables are accessible from any cluster, whereas local tables are only accessible from the 
cluster they were created from.

■■ The Clusters button opens the Compute page, displaying the clusters available to the 
user navigating the workspace. It includes tabs for all-purpose clusters, job clusters, 
pools, and cluster policies (see Figure 5.11). Users can perform administrative tasks on 
clusters from this page, such as changing the number and size of cluster nodes and mod-
ifying the autoscale setting and changing the inactivity period before clusters are auto-
matically terminated.

■■ The Jobs button opens a page that displays the Spark jobs available to the user nav-
igating the workspace (see Figure 5.12). The Jobs page includes a button that allows 
users to create new jobs that will execute notebooks on a schedule.

Creating a Spark Cluster with Azure Databricks

Spark clusters can be configured and deployed by clicking on the Create Cluster button on 
the Compute page. Clicking this button will take you to the Create Cluster page, where you 
will be required to define the following settings (see Figure 5.13):

1.	 Enter a unique cluster name in the Cluster Name field.

2.	 Select a cluster mode from the Cluster Mode field. The options include:

■■ Standard—Optimized for single-user clusters that run batch or stream processing 
jobs. This cluster mode supports SQL, Python, R, and Scala workloads.

■■ High Concurrency—Optimized to run concurrent workloads for users performing 
interactive analysis. This cluster mode supports SQL, Python, and R workloads.

■■ Single Node—This cluster mode runs a Spark application on a single compute node. 
It is recommended for single-user workloads that work with small data volumes.

F IGURE 5 .11   Azure Databricks Compute page

F IGURE 5 .12   Azure Databricks Jobs page



248  Chapter 5  ■  Modern Data Warehouses in Azure

3.	 Select a Databricks runtime from the Databricks Runtime Version field. This field allows 
you to select from several Databricks runtimes, including current, older, and beta ver-
sions. You can also choose from several Databricks runtimes that are optimized for 
machine learning workloads.

4.	 The Autopilot Options field allows you to set two settings: autoscaling and auto-
terminate. Selecting the Enable Autoscaling check box will configure the cluster to auto-
matically scale between the minimum and maximum number of cluster nodes, based 
on the workload. You can also enable and set an inactivity threshold (in minutes) after 
which a cluster will automatically terminate.

F IGURE 5 .13   Azure Databricks Create Cluster page



Modern Data Warehouse Components  249

5.	 Define the size and number of Azure VMs that will be used as cluster nodes in the 
Worker Type and Driver Type fields. There are several VM types and sizes to choose 
from, including those that are optimized for compute-heavy workloads, machine 
learning applications, and deep learning solutions that require GPUs. If autoscal-
ing is enabled, you will also be able to choose a minimum and maximum number of 
worker nodes.

6.	 The Advanced Options section allows you to fine-tune your Spark cluster by altering 
various Spark configuration options, adding libraries or environment-specific settings 
with init scripts, and defining custom logging. This section also allows you to enable 
ADLS credential passthrough, which automatically passes the Azure AD credentials of a 
specific user (when using the Standard or Single Node cluster mode) or the current user 
(when using the High Concurrency cluster mode) to Databricks for authentication when 
interacting with an ADLS account.

7.	 Click Create Cluster at the top of the page to begin creating the cluster.

Creating a Notebook and Accessing Azure Storage

The first step to begin working with data is to create a new notebook. You can do this by 
clicking the Create button on the left-side toolbar and clicking Notebook. This will open a 
pop-up window that will prompt you to enter a name for the notebook, choose a primary 
language (Python, Scala, SQL, or R), and select a cluster to attach the notebook to. Once 
these options are set, click the Create button to create the notebook. You will be guided to 
the notebook once it is finished being created. Figure 5.14 illustrates how to create a new 
Python notebook from this window.

Regardless of the primary notebook language, developers can set 
specific notebook cells to user other languages by using the magic % 
command followed by a language category. For example, if you would 
like to write a SQL command in a notebook whose primary language is 
Python, go to a new notebook cell and type %SQL. This will configure the 
cell to accept SQL commands.

F IGURE 5 .14   Azure Databricks Create Notebook page



250  Chapter 5  ■  Modern Data Warehouses in Azure

The first cell in a notebook is typically used to import any libraries that will be needed to 
manipulate data or to establish a connection with an external data source. This section will 
focus on connecting to Azure Storage, more specifically ADLS. There are three ways to estab-
lish a connection to ADLS with Azure Databricks:

■■ Create a mount point in DBFS to the storage account or the desired folder with an 
access key, a SAS token, a service principal, or Azure AD credential passthrough.

■■ Access ADLS via a direct path with a service principal.

■■ Access ADLS directly with Azure AD credential passthrough.

Creating a service principal is out of scope for the DP-900 exam and will not be covered 
in this book. Refer to the following blog to learn how to create a service principal that can 
be used to establish a connection with ADLS: https://docs.microsoft.com/en-us/
azure/active-directory/develop/howto-create-service-principal-portal. 
For now, we will cover how to establish a connection by creating a mount point in DBFS 
with Azure AD credential passthrough.

To create a mount point in DBFS for an ADLS account, use the dbutils.fs.mount 
command in the first notebook cell. This command uses three parameters to define a 
mount point:

■■ A source parameter that takes the ADLS URI as an argument. If required, the URI can 
point to a specific subdirectory in ADLS.

■■ A mount_point parameter that sets the location (in DBFS) and name of the 
mount point.

■■ An extra_config parameter that accepts the authorization information required to 
access the external storage account. You can set a variable to the OAuth and Spark con-
figuration settings for Azure AD credential passthrough and pass it in the extra_ 
config parameter to make the dbutils.fs.mount command reusable and 
more readable.

Once the mount point has been created, you can run the dbutils.fs.ls command with 
the mount point name as an argument to verify that you can view the subdirectories in the 
dp900-adls-container container. See Figure 5.15 for an illustration of both the dbutils 
.fs.mount and dbutils.fs.ls commands.

Remember that users who are establishing a connection to ADLS with 
Azure AD credential passthrough will need to have been assigned the 
Storage Blob Data Reader role at a minimum to read data.

Users attempting to read or write data via the mount point will have their credentials 
evaluated. Alternatively, to creating a mount point, users can access data directly from an 
ADLS account with Azure AD credential passthrough by passing the ADLS URI in a  
spark.read command. For example, the following PySpark code assumes that the cluster 
running the command has Azure AD credential passthrough enabled and the user running 
the command has the appropriate permissions to the products subdirectory of the dp900-
adls-container container:

https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal


Modern Data Warehouse Components  251

readCsvData = spark.read.csv("abfss://dp900-adls- 
container@dp900adls001.dfs.core.windows.net/
products/products/*.csv")

While Azure AD credential passthrough is the most seamless method for accessing an 
ADLS account, there are several scenarios where you will need to use one of the other two 
access methods. For example, batch processing jobs that are orchestrated via ADF or an 
Azure Databricks job will need to establish a connection to the ADLS path with a service 
principal to guarantee a consistent connection. Refer to the following to learn more about 
how to use the different access methods to establish a connection with ADLS: https://
cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/07/01/
securing-access-to-azure-data-lake-gen-2-from-azure-databricks.

Azure Data Factory
Azure Data Factory (ADF) is a managed cloud service that can be used to build complex 
ETL, ELT, and data integration projects. With ADF, data engineers can create automated 
workflows (known as pipelines) that orchestrate data movement and data transformation 
activities. The following list includes several strengths that make ADF an integral part of any 
data-driven solution built in Azure:

■■ The ability to author code-free data pipelines with a graphical user interface (GUI) to 
simplify pipeline development and maintenance

■■ Over 90 native connectors for on-premises and multi-cloud data sources that allow for 
hybrid data movement scenarios

■■ Integration with several compute services such as Azure HDInsight, Azure Databricks, 
and Azure SQL to orchestrate transformation activities such as Spark jobs and SQL 
stored procedures

■■ Control flow constructs like loops, conditional activities, variables, and parameters that 
control the customization of a pipeline run

F IGURE 5 .15   Creating a mount point with Azure AD credential passthrough

mailto:dp900-­adls-­
container@dp900adls001.dfs.core.windows.net
mailto:dp900-­adls-­
container@dp900adls001.dfs.core.windows.net
https://cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/07/01/securing-access-to-azure-data-lake-gen-2-from-azure-databricks
https://cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/07/01/securing-access-to-azure-data-lake-gen-2-from-azure-databricks
https://cloudblogs.microsoft.com/industry-blog/en-gb/technetuk/2020/07/01/securing-access-to-azure-data-lake-gen-2-from-azure-databricks


252  Chapter 5  ■  Modern Data Warehouses in Azure

■■ No-code/low-code data transformations with mapping data flows and Power Query that 
utilize on-demand Spark clusters for compute

■■ The ability to trigger pipelines to run at a fixed time, periodic time interval, or in 
response to an event

■■ SDK and REST API support that allows developers to manage data factory work-
flows with existing applications and script languages (such as Azure PowerShell and 
Azure CLI)

■■ Native integration with Azure DevOps to incorporate ADF workflows with existing 
continuous integration/continuous development (CI/CD) pipelines

■■ The ability to monitor pipeline runs and alert users of any failures

A single Azure subscription can have one or more data factories (also known as ADF 
instances). This is so users can isolate different projects as well as support different stages of 
a solution’s development life cycle, like development, test, quality assurance, and production.

ADF instances are composed of the following core components:

■■ Pipelines are a logical grouping of activities that perform data transformation or data 
movement operations. For example, a pipeline can include a group of activities that 
move data from external data sources to ADLS followed by an Azure Databricks note-
book activity to execute an Azure Databricks notebook that processes the data. Pipeline 
activities can be chained together to run sequentially, or they can operate independently 
in parallel.

■■ Activities represent a data transformation or data movement step in a pipeline. ADF 
supports the following three types of activities:

■■ Data movement activities—These activities move data from one source to another. 
For example, a copy activity can be used to copy data from one data source 
to another.

■■ Data transformation activities—These activities perform transformation operations 
on the data. Some data transformation activities include an Azure Databricks note-
book, a Hive query running on an Azure HDInsight cluster, an Azure Function, and 
an ADF mapping data flow.

■■ Control activities—These activities control the flow of an ADF pipeline. For example, 
ADF supports foreach, filter, if, switch, and until activities to control the flow of a 
pipeline. Developers can also use the Execute Pipeline control activity to run pipelines 
as a part of another pipeline.

■■ Linked services define the connection information that is needed for ADF to connect to 
external resources. ADF supports the following two types of linked services:

■■ Data store—This linked service type is used to define the connection information  
for external data sources such as Azure SQL Database, Azure Blob Storage, and 
Azure Cosmos DB. The full list of supported data stores can be found at  
https://docs.microsoft.com/en-us/azure/data-factory/ 
copy-activity-overview#supported-data-stores-and-formats.

https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats


Modern Data Warehouse Components  253

■■ Compute resources—This linked service type is used to define the connection 
information for external compute resources such as Azure HDInsight, Azure Data-
bricks, and Azure Functions. The full list of support external compute stores can 
be found at https://docs.microsoft.com/en-us/azure/data-factory/
transform-data#external-transformations.

■■ Datasets use linked services to represent data structures within data stores, such as a 
relational database table or a set of files. For example, an Azure Blob Storage–linked 
service defines the connection information that ADF uses to connect to the Azure Blob 
Storage account. An Azure Blob Storage dataset can use that linked service to represent 
a blob container or a specific file within the storage account. Datasets can be used in 
activities as inputs or outputs.

■■ Integration runtimes provide the compute infrastructure where activities either run or 
get triggered from. While the location for an ADF instance is chosen when it is created, 
integration runtimes can be assigned a different location. This allows developers to run 
activities with compute infrastructure that is closer to where their data is stored. ADF 
supports the following three integration runtime types:

■■ Azure integration runtimes can run data flow activities in Azure, copy activities 
between cloud data stores, and trigger Azure-based compute activities (such as 
Azure HDInsight Hive operations or Azure Databricks notebooks). The default 
AutoResolveIntegrationRuntime that is created with every ADF instance is an Azure 
integration runtime. Azure integration runtimes support both public and private con-
nections when connecting to data stores and compute services. Private connections can 
be established by enabling a managed virtual network for the integration runtime.

■■ Self-hosted integration runtimes are used to run data movement activities bet-
ween cloud data stores and a data store in a private or on-premises network. This 
integration runtime type is also used to trigger compute activities that are hosted in 
on-premises or Azure virtual networks. Self-hosted integration runtimes require that 
a self-hosted integration runtime client application is installed on one or  
more machines that are associated with a private or on-premises network and 
connected to the self-hosted integration runtime in ADF. More information about 
creating and configuring a self-hosted integration runtime can be found at  
https://docs.microsoft.com/en-us/azure/data-factory/ 
create-self-hosted-integration-runtime?tabs=data-factory.

■■ Azure-SSIS integration runtimes are used to execute legacy SQL Server Integration 
Services (SSIS) packages in ADF. This allows users to lift-and-shift existing SSIS 
workloads to Azure without having to completely rebuild their control flows and 
data flows in ADF. When an Azure-SSIS integration runtime is configured, users 
can leverage it to power an Execute SSIS Package activity. This activity will run 
the deployed SSIS packages. More information about configuring an Azure-SSIS 
integration runtime can be found at https://docs.microsoft.com/ 
en-us/azure/data-factory/concepts-integration-runtime# 
azure-ssis-integration-runtime.

https://docs.microsoft.com/en-us/azure/data-factory/transform-data#external-transformations
https://docs.microsoft.com/en-us/azure/data-factory/transform-data#external-transformations
https://docs.microsoft.com/en-us/azure/data-factory/create-self-hosted-integration-runtime?tabs=data-factory
https://docs.microsoft.com/en-us/azure/data-factory/create-self-hosted-integration-runtime?tabs=data-factory
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime#azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime#azure-ssis-integration-runtime
https://docs.microsoft.com/en-us/azure/data-factory/concepts-integration-runtime#azure-ssis-integration-runtime


254  Chapter 5  ■  Modern Data Warehouses in Azure

Azure and Azure-SSIS integration runtimes package compute resources 
(CPU, memory, and network IO) as Data Integration Units (DIUs). Self-
hosted integration runtimes leverage the compute resources that are 
allocated to the node the integration runtime is installed on. More 
information about DIUs can be found at https://docs.microsoft 
.com/en-us/azure/data-factory/copy-activity- 
performance-features#data-integration-units.

Now that we have established what the core components of ADF are, let’s dive into how 
to create an ADF instance through the Azure Portal and how to navigate the Azure Data 
Factory Studio UI.

Deploying an ADF Instance

The following steps describe how to create a new Azure Data Factory instance through the 
Azure Portal:

1.	 Log into portal.azure.com and search for Data factories in the search bar at the top 
of the page. Click Data Factories to go to the Data factories page in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your ADF instance.

3.	 The Create Data Factory page includes six tabs to tailor the workspace configuration. 
Let’s start by exploring the options in the Basics tab. Just as with other services, this tab 
requires you to choose an Azure subscription, a resource group, a name, and a region 
for the instance. There is an option to choose an older ADF version, but it is recom-
mended to use the most current version. Figure 5.16 is an example of a completed ver-
sion of this tab.

F IGURE 5 .16   Create an ADF Instance: Basics tab.

https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance-features#data-integration-units
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance-features#data-integration-units
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-performance-features#data-integration-units
http://portal.azure.com


Modern Data Warehouse Components  255

4.	 The Git configuration tab allows you to integrate the ADF instance with an existing 
Azure DevOps or GitHub repository. ADF entities (such as pipelines, activities, linked 
services, and datasets) are managed behind the scenes as JSON objects, which can be 
integrated with existing CI/CD repositories. Click the Configure Git Later check box if 
you would like to configure a Git pipeline later or save your ADF entities to the data 
factory service (see Figure 5.17).

5.	 The Networking tab allows you to define the networking rules for the auto-resolve 
integration runtime as well as any self-hosted integration runtimes that you may 
provision.

6.	 The Advanced tab allows you to supply your own encryption key for blob and file data. 
Data is encrypted with Microsoft-managed keys by default, but can be changed to a 
customer-managed key as long as the key is stored in Azure Key Vault.

7.	 The Tags tab allows you to place tags on the ADF instance. Tags are used to categorize 
resources for cost management purposes.

8.	 Finally, the Review + Create tab allows you to review the configuration choices made 
during the design process. If you are satisfied with the choices made for the ADF in-
stance, click the Create button to begin deploying the instance.

While this section describes how to deploy an ADF instance through the 
Azure Portal, it is important to note that ADF instances can be created 
with several scripting and development tools such as Azure PowerShell, 
Azure CLI, the .NET and Python SDKs for Data Factory, and the REST API. 
They can also be defined within an Infrastructure as Code template and 
deployed alongside several other services in a CI/CD workflow.

Once the ADF instance is deployed, go back to the Data factories page and click on 
the newly created workspace. Click on the Open Azure Data Factory Studio button in the 
middle of the overview page to navigate to the Azure Data Factory Studio and start working 
within the ADF ecosystem. Figure 5.18 is an example of the overview page with the Open 
Azure Data Factory Studio button highlighted.

F IGURE 5 .17   Create an ADF Instance: Git configuration tab.



256  Chapter 5  ■  Modern Data Warehouses in Azure

Clicking the Open Azure Data Factory Studio button will open a new browser window, 
using your Azure AD credentials to log into the Azure Data Factory Studio. Figure 5.19 
highlights the main features of the Azure Data Factory Studio home page.

Navigating the Azure Data Factory Studio

The Azure Data Factory Studio is the central tool for authoring ADF resources. There 
are several buttons on the home page that enable users to start building new workflows 
very quickly:

■■ The Ingest button, which navigates users to the Copy Data tool. This tool allows devel-
opers to quickly begin copying data from one data store to another

F IGURE 5 .19   Azure Data Factory Studio home page

F IGURE 5 .18   Azure Data Factory overview page



Modern Data Warehouse Components  257

■■ The Orchestrate button, which navigates users to the Author page where they can begin 
building pipelines

■■ The Transform Data button, which opens a new page where developers can build a 
mapping data flow

■■ The Configure SSIS button, which navigates users to a new page where they can con-
figure a new Azure-SSIS integration runtime

On the left side of the page there is a toolbar with four buttons, including a Home button 
that will navigate users back to the Azure Data Factory Studio home page. The following 
list describes how you can use the other buttons in the toolbar to build and manage ADF 
resources:

■■ The Author button opens the Author page where users can build and manage pipelines, 
datasets, mapping data flows, and Power Query activities. Figure 5.20 is an example of 
the Author page with a single activity pipeline that copies data from Azure SQL Data-
base to ADLS.

■■ The Monitor button opens a page that provides performance metrics for pipeline runs, 
trigger runs, and integration runtimes. Figure 5.21 is an example of the Monitor page.

F IGURE 5 .20   Azure Data Factory Studio Author page



258  Chapter 5  ■  Modern Data Warehouses in Azure

■■ The Manage button opens a page (see Figure 5.22) that allows you to perform several 
management tasks, such as those listed here:

■■ Create or delete linked services.

■■ Create or delete integration runtimes.

■■ Link an Azure Purview account to catalog metadata and data lineage.

■■ Connect the ADF instance to a Git repository.

■■ Create or delete pipeline triggers.

■■ Configure a customer managed encryption key and define access management for the 
ADF instance.

The following section, “Building an ADF Pipeline with a Copy Data Activity,” will detail 
how to create the activity, datasets, and linked services that are associated with the pipeline 
in Figure 5.20 (shown earlier). More specifically, it will demonstrate how to use the copy 
activity to copy data from an Azure SQL Database to an ADLS account. The source data-
base is restored from the publicly available AdventureWorksLT2019 database backup. If you 
would like to build this demo on your own, you can find the database backup at  
https://docs.microsoft.com/en-us/sql/samples/adventureworks- 
install-configure?view=sql-server-ver15&tabs=ssms#download-
backup-files.

F IGURE 5 .22   Azure Data Factory Studio Manage page

F IGURE 5 .21   Azure Data Factory Studio Monitor page

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15&tabs=ssms#download-backup-files


Modern Data Warehouse Components  259

Building an ADF Pipeline with a Copy Data Activity

The first step in creating an ADF pipeline through the Azure Data Factory Studio is to nav-
igate to the Author page by clicking either the Author button on the left-side toolbar or the 
Orchestrate button on the home page. The left pane on the Author page contains a tree view 
named Factory Resources. From here, you can create or navigate through existing pipe-
lines, datasets, mapping data flows, or Power Query activities by clicking the + button or the 
ellipsis (. . .) next to each menu item. Figure 5.23 illustrates how to create a blank pipeline 
by clicking the + button.

After you click Pipeline, a blank pipeline canvas will open with a new toolbar on the left 
side of the canvas that contains every activity that can be added to the pipeline. Any of these 
activities can be dragged from the Activities toolbar and dropped onto the central canvas 
to build out the pipeline. At the top of the canvas there are buttons to validate the pipeline 
for any errors, debug the pipeline, and add a trigger to the pipeline. On the right side of the 
canvas is the Properties tab where you can add a friendly name and a description for the 
pipeline. At the bottom of the canvas there are options to create new parameters and vari-
ables that can make pipeline runs more dynamic. Figure 5.24 illustrates each of these com-
ponents with a friendly name added in the Properties tab.

F IGURE 5 .23   Creating a blank ADF pipeline

F IGURE 5 .24   The ADF Pipeline Creation page



260  Chapter 5  ■  Modern Data Warehouses in Azure

To add a copy activity, expand the Move & Transform option in the Activities toolbar 
and drag the Copy Data activity to the canvas. The new activity will include six configura-
tion tabs that will be located at the bottom of the tab. The first tab (General tab) allows you 
to provide a friendly name and description for the activity as well as time-out and retry set-
tings. Figure 5.25 is an example of this view with a friendly name that describes the activity’s 
functionality.

Out of the six copy activity configuration tabs, only two of them require user input: 
the Source tab and the Sink tab. These two tabs will define the source dataset and the des-
tination, or sink, dataset that the data is being copied to. The Source tab allows you to 

F IGURE 5 .25   Copy Data Activity: General tab



Modern Data Warehouse Components  261

choose an existing dataset or create a new one. If you click the + New button, a new page 
will open where you can choose from one of the available data source connectors (see 
Figure 5.26).

F IGURE 5 .26   New Dataset page



262  Chapter 5  ■  Modern Data Warehouses in Azure

In the search bar, type Azure SQL Database and choose the Azure SQL Database connec-
tor. Click Continue at the bottom of the page to open the Set Properties page for the dataset. 
This page allows you to set a friendly name for the dataset and choose/create the linked ser-
vice that will be used to connect to the data source. Expand the Linked Service drop-down 
menu and click + New to create a linked service for the database. This will open a new page 
where you can set a friendly name for the linked service, the integration runtime, and the 
connection information for the database. Figure 5.27 is a completed example of the New 
Linked Service page for an Azure SQL Database.

F IGURE 5 .27   New linked service page: Azure SQL Database



Modern Data Warehouse Components  263

Once the settings for the linked service are properly set, click the Create button to create the 
linked service and to be redirected to the Set Properties page for the dataset. With the linked ser-
vice defined, the next step will be to either choose the table or view that the dataset will repre-
sent or leave the Table Name setting blank. For the purposes of this example, we will choose the 
SalesLT.ProductCategory table. Figure 5.28 is a completed example of the Set properties page.

After you click OK at the bottom of the Set Properties page, the dataset will be created 
and added as the source dataset in the copy activity. Because the source dataset is an Azure 
SQL Database, the Source tab includes several optional settings that are tailored to relational 
databases. For example, if you did not choose a table or view in the dataset tab, you can use 
a query or a stored procedure to define the dataset. You can also parameterize this setting so 
that the dataset varies based on the value passed to the parameter. Figure 5.29 illustrates the 
list of options that are available in the Source tab for an Azure SQL Database.

F IGURE 5 .28   Set properties page for a new dataset: Azure SQL Database

F IGURE 5 .29   Copy Data Activity: Source tab



264  Chapter 5  ■  Modern Data Warehouses in Azure

Now that the source dataset is set, the next step is to configure a sink dataset. The Sink 
tab provides the same options as the Source tab, along with the ability to create a new data-
set. Because this example uses an ADLS account as the sink data store, choose the Azure 
Data Lake Storage Gen2 connector on the New Dataset page. After clicking Continue, you 
will be prompted to set a file format for the dataset. For this example, choose the Delimited-
Text (CSV) option and click Continue.

As with the Azure SQL Database dataset, the Set Properties page allows you to set 
a friendly name for the dataset and choose/create the linked service that will be used to 

F IGURE 5 .30   New linked service page: ADLS



Modern Data Warehouse Components  265

connect to the data source. The new linked service page for ADLS is also similar to the 
new linked service page for Azure SQL Database as it allows you to set a friendly name for 
the linked service, the integration runtime, and the connection information for the storage 
account (see Figure 5.30). Click the Create button to create the linked service and to be redi-
rected to the Set Properties page for the dataset.

With the ADLS linked service defined, the Set Properties page allows you to either set a 
file path for the dataset or leave it blank. This example uses the dp900-adls-container/
products/ file path for the sink dataset (see Figure 5.31).

After you click OK at the bottom of the Set Properties page, the dataset will be created 
and added as the sink dataset in the copy activity. Like the Azure SQL Database dataset, 
there are several additional settings in the Sink tab that will be relevant to the chosen data-
set type. The Sink tab (and the Source tab) also allows you to open the dataset with the 
Open button (next to the Sink dataset setting). This button opens a new page that allows 
you to make several changes that are specific to the dataset type. Because the sink dataset 
is CSV data stored in ADLS, the list of settings that can be edited include how the data 
is compressed, the column and row delimiters for the data, how the data is encoded, and 
whether the first row should be treated as a header. You can also use this page to define 
a filename for the dataset. Figure 5.32 illustrates this page with all of the available data-
set settings.

Once the dataset settings are properly configured, navigate back to the pipeline by click-
ing on the pipeline tab at the top of the page. Click on the Mapping tab to map the source 
dataset columns to the sink columns. This tab also allows you to set datatype settings, such 
as the date/time format, and whether to truncate data that is longer than what the column 
definition allows. Figure 5.33 is an example of the Mapping tab.

F IGURE 5 .31   Set properties page for a new dataset: ADLS



266  Chapter 5  ■  Modern Data Warehouses in Azure

F IGURE 5 .32   Using the Azure Data Factory Studio to edit a CSV dataset

F IGURE 5 .33   Copy Data Activity: Mapping tab



Modern Data Warehouse Components  267

Navigate to the Settings tab after mapping the source and sink columns. This tab allows 
you to set how many DIUs you want allocated to the pipeline, or if you want the pipeline to 
automatically apply the optimal number of DIUs. You can also set the degree of parallelism 
that the copy activity will use if the volume of source dataset requires a scale-out solution.

The last tab in the copy activity Is the User Properties tab. This allows you to tag and 
monitor specific ADF resources, such as datasets.

Click the Publish All button at the top of the page to save the pipeline and the datasets. 
To run the pipeline or schedule the pipeline to run at a later time, click the Add Trigger 
button at the top of the canvas and choose either Trigger now to begin a pipeline run or 
New/Edit to create a scheduled or event-based trigger. Figure 5.34 illustrates where the Pub-
lish All and Add Trigger buttons are located. Once the pipeline is published, click the Trigger 
button to either run it right then and there or to create a schedule to run it at a later time.

Real-Time Azure Data Processing Services
While the previously described set of services can be used in a variety of data processing 
tasks, it is important to note that there are other Azure data services that are used for niche 
data processing use cases. For example, Azure Stream Analytics and Azure Data Explorer are 
almost exclusively used in stream processing workflows. These services are out of scope for 
the DP-900 exam and will only be covered briefly in the following sections.

Azure Stream Analytics

Azure Stream Analytics is a PaaS stream processing engine that can be used to process high 
volumes of streaming data from multiple sources. Users can create Azure Stream Analytics 
jobs through the Azure Portal, Azure CLI, Azure PowerShell, or an Infrastructure as Code 
template like ARM. Jobs consist of three core components: one or more inputs, a query, and 
one or more outputs.

Inputs can include real-time message ingestion services like Azure Event Hubs and Azure 
IoT Hub as well as persistent data stores like Azure Blob Storage and Azure SQL Database. 
This enables developers to combine streaming data with historical data or with reference 
data for lookup operations.

Developers can use the Stream Analytics query language to filter, sort, aggregate, or join 
data from different sources. This language is a subset of standard T-SQL with additional 
functionality to apply computations over specific time windows. The language can also be 
extended with JavaScript and C# user-defined functions.

F IGURE 5 .34   Using the Publish all button to save the pipeline and datasets.



268  Chapter 5  ■  Modern Data Warehouses in Azure

Jobs deliver processed information to one or more outputs. Azure Stream Analytics allows 
you to customize what happens based on the results of the data that was processed. Here are 
some common outputs:

■■ Services like Azure Event Hubs, Azure Service Bus, or Azure Functions to trigger alerts 
or custom workflows

■■ Power BI dashboards for real-time dashboarding

■■ Persistent data stores like Azure Blob Storage, ADLS, Azure SQL Database, or Azure 
Synapse Analytics dedicated SQL pools for long-term storage or batch processing

If you would like to learn more about Azure Stream Analytics, visit https://docs 
.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction.

Azure Data Explorer

Azure Data Explorer is a near real-time processing engine that analyzes structured, semi-
structured, and unstructured data across time windows. It uses the Kusto Query Language 
(KQL) to analyze data and is capable of ingesting and analyzing petabytes of data. Typical 
use cases for Azure Data Explorer include interactively analyzing logs and conducting time 
series analytics on metric data from IoT sensors.

If you would like to learn more about Azure Data Explorer, visit https://docs 
.microsoft.com/en-us/azure/data-explorer/data-explorer-overview.

End-to-End Analytics with Azure 
Synapse Analytics
Azure Synapse Analytics is an enterprise analytics system that integrates multiple services 
that serve analytical workloads in a single environment. Through the Azure Synapse work-
space, users can leverage the following services to build a modern data warehouse solution:

■■ Synapse Studio is a unified environment where users can manage all components of the 
Azure Synapse Analytics ecosystem. The following tasks can be performed with Syn-
apse Studio:

■■ Build ETL and ELT workflows that can be automated to run at predetermined times 
or after specific events.

■■ Configure and deploy dedicated SQL, Apache Spark, and Data Explorer pools.

■■ Develop SQL, Spark, or KQL code to analyze data with SQL, Spark, or Data 
Explorer pools.

■■ Monitor resource utilization, query performance, and user access across SQL, Spark, 
or Data Explorer pools.

■■ Integrate with CI/CD and data catalog services such as Azure DevOps and 
Azure Purview.

https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/data-explorer/data-explorer-overview
https://docs.microsoft.com/en-us/azure/data-explorer/data-explorer-overview


End-to-End Analytics with Azure Synapse Analytics  269

■■ Dedicated SQL pools are analytical data stores that use a scale-out, massively parallel 
processing (MPP) architecture to effectively manage several petabytes of data. Storage 
and compute are decoupled, allowing users to easily scale compute power without having 
to move data. Azure Synapse workspaces can have one or more dedicated SQL pools.

■■ Serverless SQL pool is a serverless query service that allows analysts to use T-SQL to 
interactively query Azure Storage files. It does not have local storage or ingestion capa-
bilities. Every Azure Synapse workspace comes with a serverless SQL pool endpoint that 
cannot be deleted. Azure Synapse workspaces only support a single serverless SQL pool 
(named “Built-in”).

■■ Apache Spark pools are managed, open-source Apache Spark clusters in the Azure Syn-
apse ecosystem. Users can set the number of compute nodes in a cluster, with an option 
to automatically scale clusters up and down based on the workload. Cluster nodes 
can be configured with predefined node sizes, ranging from small (4 vCores, 32 GB of 
memory) to xxx large (80 vCores, 504 GB of memory). With Synapse notebooks, data 
engineers can use an Apache Spark pool to analyze data with Python, SQL, R, Scala, 
Java, or .NET code. More information about Azure Synapse Analytics Apache Spark 
pools can be found at https://docs.microsoft.com/en-us/azure/ 
synapse-analytics/spark/apache-spark-pool-configurations.

■■ Synapse pipelines are orchestration workflows that define a set of actions to perform on data. 
This service has the same functionality as ADF but is available through the Azure Synapse 
workspace, making it more ideal for users who want to manage their analytical data stores, 
data engineering activities, and orchestration pipelines from the same environment. The con-
cepts covered previously in this chapter for ADF also apply to Azure Synapse pipelines.

■■ Synapse Link is a hybrid transactional and analytical processing (HTAP) tool that 
enables users to run near real-time analytical queries over transactional data. With 
Azure Synapse Link, users do not need to build complex ETL workflows that move data 
from a transactional data store to an analytical one. Instead, Synapse Link synchronizes 
data from transactional data stores like Azure Cosmos DB and Azure SQL Database 
with a column-oriented analytical data store that can be explored with the Azure Syn-
apse Analytics serverless SQL pool or an Azure Synapse Analytics Apache Spark pool. 
More information about Azure Synapse Link can be found at https://docs 
.microsoft.com/en-us/azure/cosmos-db/synapse-link.

■■ Data Explorer pools are optimized for telemetry analytics. Azure Synapse data explorer 
automatically indexes free-text and semi-structured data that is found in telemetry data, 
such as logs and time series data. The concepts covered previously in this chapter for 
Azure Data Explorer also apply to Azure Synapse data explorer.

■■ Power BI is a reporting service that can be used to develop dashboards, reports, and 
datasets for self-service BI. Azure Synapse Analytics allows users to connect a Power BI 
workspace to an Azure Synapse Analytics workspace for a seamless development expe-
rience. This provides analysts with a single environment for analyzing data, developing 
insightful reports, and sharing the reports to various business users. Power BI work-
spaces will be described in further detail in Chapter 6, “Reporting with Power BI.”

https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-pool-configurations
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-pool-configurations
https://docs.microsoft.com/en-us/azure/cosmos-db/synapse-link
https://docs.microsoft.com/en-us/azure/cosmos-db/synapse-link


270  Chapter 5  ■  Modern Data Warehouses in Azure

As you can see, Azure Synapse Analytics allows users to leverage several different tech-
nologies to build modern data warehouse solutions in the same environment. The following 
sections describe how to get started with Azure Synapse Analytics, including how to deploy 
a workspace and how to navigate Synapse Studio. Afterward, we will examine the two cate-
gories of SQL pools, dedicated and serverless, and when to use them.

Deploying an Azure Synapse Analytics Workspace
Like any service in Azure, an Azure Synapse workspace can be deployed though the 
Azure Portal, Azure PowerShell, or Azure CLI or via an Infrastructure as Code template. 
The following steps describe how to deploy a new Azure Synapse workspace through the 
Azure Portal:

1.	 Log into portal.azure.com and search for Azure Synapse Analytics in the search bar 
at the top of the page. Click Azure Synapse Analytics to go to the Azure Synapse Ana-
lytics page in the Azure Portal.

2.	 Click Create to start choosing the configuration options for your Azure Synapse 
workspace.

The Create Synapse Workspace page includes five tabs to tailor the workspace configura-
tion. Let’s start by exploring the options in the Basics tab. Just as with other services, this tab 
requires you to choose an Azure subscription, a resource group, a name, and a region for the 
workspace. You will also need to associate an ADLS account to the workspace. Azure Syn-
apse will use this ADLS account as the primary storage account and the container to store 
workspace data. A completed example of this tab can be seen in Figure 5.35.

The Security tab requires you to create an administrator account for the serverless and 
dedicated SQL pools managed by the workspace. You can also use this tab to enable net-
work access to the associated ADLS account with the workspace managed identity and 
enable double encryption with a key that you provide. Figure 5.36 is an example of the 
security tab.

The Networking tab allows you to choose whether to set up a dedicated, managed VNet 
for Azure Synapse Analytics. You can also enable access for all IP addresses through this tab 
or choose to grant access to specific IP addresses after the workspace is deployed.

The Tags tab allows you to place tags on the resources deployed with Azure Synapse Ana-
lytics. Tags are used to categorize resources for cost management purposes.

Finally, the Review + Create tab allows you to review the configuration choices made dur-
ing the design process. If you are satisfied with the choices made for the Azure Synapse Ana-
lytics workspace, click the Create button to begin deploying the workspace.

Once the Azure Synapse Analytics workspace is deployed, go back to the Azure Synapse 
Analytics page, and click on the newly created workspace. From the Azure Portal, adminis-
trators can set Azure AD authentication, create new analytics pools (dedicated SQL, Apache 
Spark, and Data Explorer pools), configure network settings, and monitor performance. 

http://portal.azure.com


End-to-End Analytics with Azure Synapse Analytics  271

Click on the Open Synapse Studio button in the middle of the overview page to navigate to 
Synapse Studio UI. Figure 5.37 is an example of the workspace overview page with the Open 
Synapse Studio button highlighted.

A new browser window will open after you click the Open Synapse Studio button, using 
your Azure AD credentials to log in to the workspace. Figure 5.38 is an example of the Syn-
apse Studio home page.

Navigating the Synapse Studio UI
Synapse Studio is the central tool for administering and managing all aspects of the Azure 
Synapse Analytics ecosystem that enable users to start building new Azure Synapse Analytics 
workflows very quickly, including an Ingest button to begin moving data, an Explore and 

F IGURE 5 .35   Create an Azure Synapse Analytics workspace: Basics tab.



272  Chapter 5  ■  Modern Data Warehouses in Azure

F IGURE 5 .37   Azure Synapse workspace overview page

F IGURE 5 .36   Create an Azure Synapse Analytics workspace: Security tab.



End-to-End Analytics with Azure Synapse Analytics  273

Analyze button to navigate users to Azure Synapse Analytics tutorials, and a Visualize button 
to connect to a Power BI workspace. On the left side of the page there is a toolbar with six 
buttons, including a Home button that will navigate users back to Synapse Studio home 
page. The following list describes how you can use the other buttons in the toolbar to build a 
modern data warehouse:

■■ The Data button opens a page that allows you to link external and integrated data
sets to the Azure Synapse Analytics workspace. It has two tabs, the Workspace tab to 
organize any analytics pools that are associated with the workspace and the Linked 
tab to organize external storage such as ADLS or Azure Blob Storage. From this 
page, you can create new blank script pages or predefined scripts that run bulk load 
operations or select the top 100 rows of a table. Figure 5.39 is an example of the 
Workspace tab and the external data source options that can be added by clicking 
the + button.

■■ The Develop button opens a page that organizes all SQL scripts, KQL scripts,  
notebooks, mapping data flows, and Apache Spark jobs. Figure 5.40 is an example 
of the Develop page and the various objects that can be added by clicking 
the + button.

■■ The Integrate button opens a page that allows you to build data orchestration and 
movement pipelines. You can create new pipelines or use the Copy Data tool to perform 
a one-time or scheduled data load from over 90 data sources. The functionality is sim-
ilar to ADF, with some additional activities that are specific to Azure Synapse Analytics. 
Figure 5.41 is an example of the Integrate page and the Synapse-specific activities.

F IGURE 5 .38   Synapse Studio home page



274  Chapter 5  ■  Modern Data Warehouses in Azure

■■ The Monitor button opens a page that provides a comprehensive view of the 
performance details and statuses for the different analytics pools, activities, and 
integration pipelines. Figure 5.42 is an example of the Monitor page with a focus on the 
SQL pools section.

■■ The Manage button opens the Manage page (see Figure 5.43). This page allows you to 
perform several management tasks:

■■ Create, configure, pause, and resume analytics pools.

■■ Create and delete linked services. Linked services provide the connection information 
to external data sources that are used in Synapse pipelines.

■■ Link an Azure Purview account to catalog metadata and data lineage.

F IGURE 5 .40   Synapse Studio Develop page

F IGURE 5 .39   Synapse Studio Data page



End-to-End Analytics with Azure Synapse Analytics  275

■■ Create and delete triggers. A trigger is used to automate when a Synapse pipeline is 
executed. Types of triggers include schedules, storage events, and custom events.

■■ Create and delete integration runtimes. An integration runtime (IR) is the compute 
infrastructure used by Synapse pipelines.

■■ Manage all security access controls and credentials.

■■ Link a Git repository to your Azure Synapse Analytics workspace.

Dedicated SQL Pools
Azure Synapse Analytics dedicated SQL pools (formerly Azure SQL Data Warehouse) are 
relational data stores that use a massively parallel processing (MPP) architecture to opti-
mally manage large datasets. This can be done by separating compute and storage by using 
a SQL engine to perform computations and Azure Storage to store the data. Dedicated SQL 
pools use a relational schema, typically a star schema, to serve data to users as tables or 
views for business intelligence applications.

F IGURE 5 .41   Synapse Studio Integrate page



276  Chapter 5  ■  Modern Data Warehouses in Azure

In a modern data warehouse architecture, a dedicated SQL pool is at the end of an ETL/
ELT process, serving as the single source of truth for data analysts and BI applications. Ta-
bles using columnstore compression can store an unlimited amount of data, making dedi-
cated SQL pools the ideal destination data store for big data workloads that process several 
terabytes or even petabytes worth of data. Additional processes can also extract subsets of 
data that represent specific business segments from a dedicated SQL pool and load them into 
Azure Analysis Services or Power BI OLAP models for self-service BI scenarios.

F IGURE 5 .43   Synapse Studio Manage page

F IGURE 5 .42   Synapse Studio Monitor page



End-to-End Analytics with Azure Synapse Analytics  277

As mentioned in Chapter 2, dedicated SQL pools shard data into 60 distributions across 
one or more compute nodes depending on the dedicated SQL pool’s service level objective 
(SLO). Tables can be defined with one of three distribution patterns to optimize how data is 
sharded throughout the distributions. The following list is a quick reminder of the three dis-
tribution patterns and when to use each one:

■■ Hash distribution uses a hash function to deterministically assign each row to a dis-
tribution. When defining a table with this distribution type, one of the columns is 
designated as the distribution column. This distribution type offers the most optimal 
query performance for joins and aggregations on large tables. For this reason, large 
fact tables are typically defined as hash distributed tables. However, keep in mind 
that the values of a column designated as the distribution column cannot be updated. 
The column must also have a high number of unique values and a low number of null 
values. Poorly chosen distribution columns can lead to unacceptable query response 
times that cannot be resolved without re-creating the table. Use round robin distri-
bution instead of hash distribution if there are no suitable distribution columns for a 
large fact table.

■■ Round robin distribution evenly and randomly distributes rows across all 60 
distributions. Staging tables and fact tables without a good distribution column candi-
date are typically defined as round robin tables.

■■ Replicated tables cache a full copy of a table on the first distribution of each com-
pute node. This removes the need to shuffle data when querying data from multiple 
distributions. However, replicated tables can require extra storage, making them imprac-
tical for large tables or tables that are frequently written to. For this reason, only small 
tables (less than 2 GB) or tables that store static data (such as reference data) are defined 
as replicated tables.

Keep in mind that distribution columns in different tables that are used in 
join operations must be of the same data type to take advantage of hash 
distribution benefits and eliminate extraneous data shuffling operations.

Along with classic relational database features such as partitioning, row-store indexes, 
and statistics, dedicated SQL pools include several features that optimize the performance of 
analytical queries that aggregate large numbers of rows. These features are especially useful 
for querying historical data from fact tables, which can quickly become very large. Some of 
the most important features are as follows:

■■ Clustered columnstore indexes (CCIs) physically organize tables into a columnstore 
format. With a columnstore format, rows of data are compressed into rowgroups, opti-
mizing how large tables are stored (up to 10X data compression versus uncompressed 
data) and the processing time for queries that perform table scans (up to 10X times the 
query performance over traditional row-oriented indexes). This is ideal for data ware-
houses, especially for large fact tables that are subject to analytical queries that scan 
large amounts of data.



278  Chapter 5  ■  Modern Data Warehouses in Azure

CCIs will not compress data into columnstore format until there are more 
than 1 million rows per table, or more than 1 million rows per distribution 
in the case of a dedicated SQL pool. Since a dedicated SQL pool has 60 
distributions, a columnstore index will not be beneficial until a table has 
more than 60 million rows. For this reason, columnstore indexes may not 
be the most optimal solution for tables with less than 60 million rows. 
Partitioning data will also increase the number of rows a table needs 
to benefit from a columnstore index. More information can be found at 
https://docs.microsoft.com/en-us/azure/synapse-analytics/
sql/best-practices-dedicated-sql-pool#optimize- 
clustered-columnstore-tables.

■■ Materialized views are virtual tables created from a SELECT statement and presented 
to users as logical tables. Like a standard view, a materialized view abstracts the com-
plexity of the underlying SELECT statement from users so that there is no need to 
rewrite the statement. Unlike a standard view, materialized views precompute, store, 
and maintain data in a dedicated SQL pool just like a table. Because recomputation is 
not needed each time a materialized view is used, queries running against a materialized 
view are much faster than a standard view. Materialized views improve the performance 
of complex queries with several joins and aggregations while simplifying query main-
tenance. The query optimizer in a dedicated SQL pool can also use a materialized view 
to improve a query’s execution plan without the query needing to make a direct refer-
ence to the materialized view. Queries used to build a materialized view must include an 
aggregation in its definition.

■■ Result set caching improves query performance by automatically caching query results 
in a dedicated SQL pool user database for later use. This allows subsequent runs of the 
query to get results directly from the cache instead of recomputing the results. Result set 
caching can be enabled for a database by running the following T-SQL command:

    ALTER DATABASE dp900dedicatedSQLpool
    SET RESULT_SET_CACHING ON;

Unlike OLTP database engines like Azure SQL Database, dedicated SQL pools are not 
suitable for transactional workloads, which are characterized by frequent, small write opera-
tions and queries that interact with only a few rows of data (such as a query with a WHERE 
clause that performs a seek operation to a specific set of rows). Instead, it is best used for 
bulk write operations and queries that perform aggregations over large amounts of data.

Dedicated SQL pools are optimized for large workloads that are larger 
than 1 TB. However, there are scenarios where the data warehouse size 
will be less than 1 TB. For smaller workloads, Azure SQL Database should 
be considered. Azure SQL Database can provide similar performance 
while being more cost-efficient in these scenarios.

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool#optimize-clustered-columnstore-tables
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool#optimize-clustered-columnstore-tables
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool#optimize-clustered-columnstore-tables


End-to-End Analytics with Azure Synapse Analytics  279

In addition to Synapse Studio, dedicated SQL pools support several management tasks 
and tools that are commonly used by other Microsoft SQL offerings (such as SQL Server 
and Azure SQL Database). SQL developers can connect to a dedicated SQL pool with Azure 
Data Studio or SQL Server Management Studio (SSMS). Database administrators can also 
leverage security postures that are common to Azure SQL, such as the following:

■■ Network isolation with an Azure VNet or an IP firewall

■■ Access management with SQL authentication and Azure AD

■■ Data encryption and obfuscation with TDE and TLS, Always Encrypted, row-level 
encryption, column-level encryption, and dynamic data masking

■■ Security management with the SQL Vulnerability Assessment and Advanced Threat Pro-
tection services

More information about the different security components available for Azure SQL can 
be found in Chapter 2.

Deploying and Scaling a Dedicated SQL Pool
In addition to the methods described previously in this book for deploying Azure resources, 
users can deploy a new dedicated SQL pool through Synapse Studio with the following steps:

1.	 Click on the Manage button on the left-side toolbar in Synapse Studio and click on 
SQL pools. Click + New to begin creating a new dedicated SQL pool. You can see an 
example of the SQL pools page in Figure 5.43 (shown earlier).

2.	 The New dedicated SQL pool page includes four tabs to tailor the workspace configura-
tion. Let’s explore the options in the four tabs.

■■ The Basics tab requires that you set a name and an initial performance level (SLO) 
for the dedicated SQL pool. The performance level can be set by dragging the scale 
to the left or to the right. Figure 5.44 is a completed example of the Basics tab.

F IGURE 5 .44   New dedicated SQL pool: Basics tab



280  Chapter 5  ■  Modern Data Warehouses in Azure

■■ The Additional settings tab allows you to set the initial state of the dedicated SQL 
pool, including whether to start with a blank database or from a database backup. 
Figure 5.45 is a completed example of the Additional settings tab.

■■ The Tags tab allows you to place a tag on the dedicated SQL pool. Tags are used to 
categorize resources for cost management purposes.

■■ Finally, the Review + Create tab allows you to review the configuration choices 
made during the design process.

3.	 If you are satisfied with the choices made for the dedicated SQL pool, click the Create 
button on the Review + Create tab to begin deploying the new dedicated SQL pool.

As with any PaaS database in Azure, the SLO of a dedicated SQL pool can be easily 
scaled up or down to meet different workload needs. This can be done through the Azure 
Portal, Azure PowerShell, T-SQL, or the Create or Update Database REST API. The follow-
ing is a sample T-SQL script that updates a dedicated SQL pool’s SLO to DW1000c:

ALTER DATABASE dp900dedicatedSQLpool
MODIFY (SERVICE_OBJECTIVE = 'DW1000C');

Because compute and storage are separated, dedicated SQL pools can be paused when 
they are not used to save on compute costs. Users can pause and restart dedicated SQL pools 
through the Azure Portal, Synapse Studio, Azure PowerShell, and the dedicated SQL pool 
REST APIs. Pause and restart for dedicated SQL pools can also be automated with Azure 
Automation runbooks, Synapse pipelines, or ADF. Figure 5.46 illustrates where to find the 
pause button for a dedicated SQL pool in Synapse Studio. Once the pool is paused, the pause 
button will be replaced by a resume button.

F IGURE 5 .45   New dedicated SQL pool: Additional settings tab



End-to-End Analytics with Azure Synapse Analytics  281

Data Loading Methods for Dedicated SQL Pools
Traditional relational databases that use a symmetric multiprocessing (SMP) design such 
as SQL Server or Azure SQL Database use an ETL process for data loading. Distributed 
platforms that use a MPP design like Azure Synapse Analytics dedicated SQL pools can 
process and store large amounts of data at-scale, allowing them to leverage ELT patterns to 
load and transform data within the same service. This allows developers to perform data 
processing activities without having to rely on additional services for data transformation 
prior to loading.

Dedicated SQL pools support several data loading methods, including popular SQL 
Server methods such as the bulk copy program (bcp) utility and the SQLBulkCopy API. 
However, the fastest and most scalable way to load data is through the PolyBase or the 
COPY statement. In fact, when loading data into a dedicated SQL pool via ADF, it is recom-
mended to set the Copy Method setting in the Sink tab to use either the Copy command 
or PolyBase. With PolyBase and the COPY statement, developers can access data stored in 
Azure Blob storage or ADLS via T-SQL commands.

Generally, both of these data loading options are best when used to load data into staging 
tables. Staging tables are usually defined as heap tables, or tables without any indexes. The 
lack of an index means that data will not be reordered as it is being written, allowing the 
data to be written very quickly. Staging tables can be predefined before the external table 
is created with a normal CREATE TABLE command or created after the external table is 
established with a CREATE TABLE AS SELECT (CTAS) statement. More information about 
the CTAS statement can be found in the section “PolyBase” later in this chapter.

Once data is loaded into the staging tables, developers can use different techniques to 
update production tables with the staging data. Some techniques include using the MERGE 
statement to insert, update, or delete data in the production table based on differences in the 
staging table or replacing a section of the production table with the updated staging table 
through a process called partition switching. More information about partition switching 

F IGURE 5 .46   Pausing a dedicated SQL pool



282  Chapter 5  ■  Modern Data Warehouses in Azure

can be found at https://docs.microsoft.com/en-us/azure/synapse-analytics/
sql-data-warehouse/sql-data-warehouse-tables-partition#partition-
switching. New production tables that are based off of the staging table, but use a differ-
ent distribution method and index design, can be created with a CTAS operation.

While the COPY statement offers the best performance and most flexibility for loading 
data, it is still important to understand how to use PolyBase to load data into a dedicated 
SQL pool. The following sections describe how to use PolyBase and the COPY statement to 
load data from Azure Storage into a dedicated SQL pool.

PolyBase

PolyBase is a data virtualization technology that enables dedicated SQL pools to query Azure 
Storage data while allowing the data to stay in its original location and format. PolyBase 
uses external tables to shape and access Azure Storage data. External tables overlay a schema 
on top of the data so that it can be easily queried with T-SQL commands.

Defining external tables involves specifying the data source, the format of files in Azure 
Storage, and the table definition. These can be defined with the following T-SQL commands:

■■ CREATE EXTERNAL DATA SOURCE
■■ CREATE EXTERNAL FILE FORMAT
■■ CREATE EXTERNAL TABLE

External data sources are used to establish a connection with an Azure storage account, 
such as one that supports Azure Blob Storage or ADLS. The CREATE EXTERNAL DATA 
SOURCE command that is used to create an external data source requires the following 
arguments:

■■ LOCATION—This provides the connectivity protocol and path to the data source, such as 
abfss://dp900-adls-container@dp900adls001.dfs.core.windows.net/.

■■ CREDENTIAL—This specifies the database-scoped credential used to authenticate to the 
external data source. This argument is only required if the storage object does not allow 
anonymous access. Storage account access keys, service principals, and managed iden-
tities are the only support authentication mechanisms for Azure Storage. Developers can 
create a database-scoped credential with the CREATE DATABASE SCOPED CREDENTIAL 
T-SQL command.

■■ TYPE=HADOOP—This specifies the external data source type that is being configured. It is 
required when the external data source is ADLS and Azure Blob Storage.

The following example creates an ADLS external data source that uses an access key to 
authenticate to the storage account:

/* The following creates a database master key that is used to encrypt
the credential secret created in the CREATE DATABASE SCOPED CREDENTIAL step. */
 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<password>';
 
/* Use the following command to create the database-scoped

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-partition#partition-switching
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-partition#partition-switching
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-partition#partition-switching
mailto:dp900-­adls-­container@dp900adls001.dfs.core.windows.net


End-to-End Analytics with Azure Synapse Analytics  283

credential with the storage account key. */
 
CREATE DATABASE SCOPED CREDENTIAL dp900StorageCredential
WITH
     IDENTITY = 'dp900adls001' -- This is the storage account name.
     SECRET = '<storage_account_access_key>'
 
CREATE EXTERNAL DATA SOURCE dp900_ADLS_Ext_Source
WITH
(
  LOCATION = 'abfss://dp900-adls-container@dp900adls001.dfs.core.windows.net/',
  CREDENTIAL = dp900StorageCredential,
  TYPE = HADOOP
);

The next step in using PolyBase is to define the file format of the data stored in the 
external data source. External file formats created for Azure Synapse Analytics SQL pools 
(both dedicated and serverless SQL pools) support delimited text (such as CSV or TSV) and 
Parquet file formats. The CREATE EXTERNAL FILE FORMAT command accepts a required 
FORMAT_TYPE argument that defines the file format and several optional arguments such as 
how the data is compressed. Several of these optional arguments apply only to delimited text 
files, including:

■■ FIELD_TERMINATOR—This specifies what character in a delimited text file marks the 
end of each field (column). The default field terminator is the pipe character (|).

■■ STRING_TERMINATOR—This specifies the field terminator for words or string data in a 
delimited text file. The default string terminator is an empty string ("").

■■ FIRST_ROW—This specifies the row number that is read first by all files.

■■ DATE_FORMAT—This specifies a specific format for date and time data in a delimited 
text file.

The following example creates an external file format for CSV files:

CREATE EXTERNAL FILE FORMAT dp900_CSV_File_Format
WITH
(
     FORMAT_TYPE = DELIMITEDTEXT,
     FIELD_TERMINATOR = ',',
     STRING_TERMINATOR = '″'
);

Now that the external data source and external file format is defined, we can finally cre-
ate the external table. The CREATE EXTERNAL TABLE command allows developers to define 

mailto:dp900-­adls-­container@dp900adls001.dfs.core.windows.net


284  Chapter 5  ■  Modern Data Warehouses in Azure

column names and data types for external data. It also accepts arguments for the external 
data source and the external file format. It also enables developers to specify the folder  
or the file path and filename for the data in the external data source with the optional  
LOCATION argument.

The CREATE EXTERNAL TABLE command also allows developers to specify reject param-
eters that will determine how PolyBase handles dirty records. This information is stored as 
metadata when the external table is created and is used when a SELECT statement is issued 
against the table to determine the number or percentage of rows that can be rejected before 
the query fails. The query will return partial results until the reject threshold is exceeded, 
after which the query will fail with the appropriate error message. The following arguments 
can be used to set the reject threshold:

■■ REJECT_TYPE—Clarifies if the REJECT_VALUE option is specified as a literal value or 
a percentage. When value is chosen, a query issued against the external table will fail 
when the number of rejected rows exceeds the defined value. When percentage is chosen, 
a query issued against the external table will fail when the percentage of rejected rows 
exceeds the defined threshold.

■■ REJECT_VALUE—This specifies the value or the percentage of rows that can be rejected 
before the query fails. When value is chosen, the argument must be an integer between 0 
and 2,147,483,647. When percentage is chosen, the argument must be a decimal value 
between 0 and 100.

■■ REJECT_SAMPLE_VALUE—This determines the number of rows to attempt to retrieve 
before PolyBase recalculates the percentage of rejected rows. It is only available when 
percentage is chosen for the REJECT_TYPE and must be an integer between 0 and 
2,147,483,647.

The following example creates an external table for the SalesLT.ProductCategory CSV file 
that was created in ADLS by the ADF copy activity described previously in this chapter:

CREATE EXTERNAL TABLE [dbo].[ProductCategory_External]
(
     ProductID INT,
     ProductSubcategoryID INT,
     ProductName VARCHAR(50)
)
WITH
(
     LOCATION = '/products/productcategory.csv',
     DATA_SOURCE = dp900_ADLS_Ext_Source,
     FILE_FORMAT = dp900_CSV_File_Format,
     REJECT_TYPE = VALUE,
     REJECT_VALUE = 0
);



End-to-End Analytics with Azure Synapse Analytics  285

With the external table defined, developers can issue queries against the data without 
having to move the data from Azure Storage to the dedicated SQL pool. If they would like 
to create a copy of the data in the dedicated SQL pool, then they can do so with a CTAS 
statement. CTAS statements allow developers to create new tables based on the output 
of a SELECT statement. In a dedicated SQL pool, developers can define the distribution 
method and index design within the context of a CTAS statement. The following example 
uses a CTAS to create a dedicated SQL pool staging table based on the previously created 
external table:

CREATE TABLE [dbo].[ProductCategory_Staging]
WITH (DISTRIBUTION = ROUND_ROBIN)
AS SELECT * FROM [dbo].[ProductCategory_External]

Once the data is stored in the staging table, data engineers can perform transformations 
with native T-SQL queries that leverage the built-in distributed query processing capabil-
ities of the dedicated SQL pool. Transformed data can then be moved from the staging table 
to a production table through a variety of methods, such as a MERGE statement, partition 
switching, or with an INSERT INTO SELECT statement. New production tables can also 
be created with a CTAS statement where the SELECT statement retrieves data from the 
staging table.

COPY Statement

The COPY statement is a T-SQL construct that provides the most flexibility and best 
performance for parallel data ingestion into an Azure Synapse Analytics dedicated SQL pool. 
It provides several data loading feature enhancements over PolyBase:

■■ Allow lower privileged users to load data without needing to grant them CONTROL 
permissions on the data warehouse.

■■ Execute a single T-SQL statement without having to create any additional objects, (i.e., 
external file formats, external data sources, and external tables).

■■ Parse and load CSV files with a more extensive list of field, string, and row delimiters.

■■ Access data with a finer permission model without exposing storage account access keys 
using a shared access signature (SAS).

■■ Specify a custom row terminator for CSV files.

■■ Use SQL Server Date formats for CSV files.

■■ Leverage automatic schema discovery to simplify the process of defining and mapping 
source data into target tables.

■■ Use the automatic table creation argument to automatically create the target table. This 
works alongside the automatic schema discovery feature.

The COPY command uses several arguments to determine how to ingest data:

■■ FILE_TYPE—This specifies the format of the external data. Supported file formats 
include CSV, Parquet, and ORC.



286  Chapter 5  ■  Modern Data Warehouses in Azure

■■ CREDENTIAL—This specifies the identity mechanism used to access the Azure 
storage account.

■■ MAXERRORS—This optional argument specifies the maximum number of reject rows 
allowed before the COPY statement is cancelled. If not specified, the default value for 
this argument will be 0.

■■ COMPRESSION—This optional argument specifies the data compression method 
for the data.

■■ FIELDQUOTE—This argument applies to CSV files and specifies the character that will 
be used as the quote character in the file. If not specified, the quote character (") will be 
used as the default value for this argument.

■■ FIELDTERMINATOR—This argument applies to CSV files and specifies the field terminator 
that will be used in the CSV file. If not specified, the comma character (,) will be used as 
the default value for this argument.

■■ ROWTERMINATOR—This argument applies to CSV files and specifies the row terminator 
that will be used in the CSV file. By default, the row terminator is \r\n.

■■ FIRSTROW—This argument applies to CSV files and specifies the row number that is read 
first in all files by the COPY statement.

■■ DATEFORMAT—This argument applies to CSV files and specifies the date format of the 
date mapping using SQL Server date formats. Supported date formats include mdy, dmy, 
ymd, ydm, myd, and dym.

■■ ENCODING—This argument applies to CSV files and specifies the data encoding standard 
for the files. The default for this argument is UTF8, but it can be changed to UTF16 
depending on the encoding standard used by the files loaded by the COPY statement.

■■ IDENTITY_INSERT—This argument is specific to values that map to an identity column 
in the target table. If the argument is set to off (this is the default), then the values are 
verified but not imported. If the argument is set to on, then the values will be imported 
into the identity column.

■■ AUTO_CREATE_TABLE—This argument specifies if the table could be automatically cre-
ated by working alongside the automatic schema discovery feature.

A more extensive list of the arguments that can be used with the COPY statement  
can be found at https://docs.microsoft.com/en-us/sql/t-sql/statements/ 
copy-into-transact-sql?view=azure-sqldw-latest&preserve-
view=true#syntax.

The following example uses the COPY statement to load the SalesLT.ProductCategory 
CSV file from ADLS into the [dbo].[ProductCategory_Staging] dedicated SQL pool table. It 
assumes that the table has already been created and is empty.

COPY INTO [dbo].[ProductCategory_Staging]
FROM 'https://dp900adls001.dfs.core.windows.net/
dp900-adls-container/products/productcategory.csv'

https://docs.microsoft.com/en-us/sql/t-sql/statements/copy-into-transact-sql?view=azure-sqldw-latest&preserve-view=true#syntax
https://docs.microsoft.com/en-us/sql/t-sql/statements/copy-into-transact-sql?view=azure-sqldw-latest&preserve-view=true#syntax
https://docs.microsoft.com/en-us/sql/t-sql/statements/copy-into-transact-sql?view=azure-sqldw-latest&preserve-view=true#syntax


End-to-End Analytics with Azure Synapse Analytics  287

WITH (
     FILE_TYPE = 'CSV',
     CREDENTIAL = (IDENTITY='Shared Access Signature', SECRET = '<SAS_TOKEN>'),
     FIELDQUOTE = '"',
     FIELDTERMINATOR = ',',
     ROWTERMINATOR = '0X0A'
)

With this command, developers can quickly load data from ADLS into a dedicated SQL 
pool staging table and perform any computations required before moving the staging data 
into a production table.

Serverless SQL Pools
Azure Synapse Analytics serverless SQL pool is a serverless query service that enables 
users to analyze files in Azure Storage with T-SQL queries. Every workspace comes with a 
serverless SQL endpoint (named “Built-in”) that data analysts and developers can use to 
quickly begin querying data in a variety of different formats, including Parquet, CSV, and 
JSON. Additionally, serverless SQL pools can be used to query Azure Cosmos DB with 
Azure Synapse Link and Spark tables that are created with Azure Synapse Analytics Apache 
Spark pools.

Typical use cases for serverless SQL pools are as follows:

■■ Basic discovery and exploratory analysis with SQL queries. Analysts can use the  
OPENROWSET function in the FROM clause of a SELECT statement to access data in 
several different formats (Parquet, CSV, JSON, and Delta) from Azure Storage without 
having to persist the connection information in a separate object.

■■ Creating a logical data warehouse to provide a relational schema on top of raw data in 
Azure Storage without moving or creating a second copy of the data. Logical data ware-
houses in serverless SQL pools are complete with familiar relational database constructs 
such as databases, tables, and views.

■■ Streamlining data transformation activities with T-SQL and loading the transformed 
data back into Azure Storage or into a persistent relational data store (such as a dedi-
cated SQL pool or Azure SQL Database). Transformed data can also be served directly 
to BI tools like Power BI.

Logical data warehouses that are built with serverless SQL pools use similar data vir-
tualization techniques as those that are used with dedicated SQL pools, including external 
data sources to connect to storage accounts, external file formats that define the format of 
the data in Azure Storage, and external tables that define a schema for your external data 
sources. The primary difference is that external data sources are native to synapse SQL 
pools and do not require (or support) the TYPE=HADOOP argument. More information about 
using these constructs to create a logical data warehouse with a serverless SQL pool can be 



288  Chapter 5  ■  Modern Data Warehouses in Azure

found at https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/
tutorial-logical-data-warehouse.

Just like dedicated SQL pools, serverless SQL pools support several management tasks 
and tools that are common to the Microsoft suite of SQL offerings. Developers can choose 
to run ad hoc queries against a serverless SQL pool endpoint from Synapse Studio or via 
common client tools like Azure Data Studio and SQL Server Management Studio (SSMS). 
Furthermore, database administrators can manage authentication and authorization with 
SQL authentication and Azure AD.

While serverless and dedicated SQL pools both leverage distributed processing architec-
tures that are designed to manage large datasets, when to use one or the other depends on 
use case requirements and the acceptable cost-to-performance threshold. Serverless SQL 
pools use a pay-per-query cost model, only charging users for the amount of data processed 
by each query. This cost model provides a cheap alternative to dedicated SQL pools for 
quickly analyzing data with ad hoc queries. However, because storage is not local to the 
serverless SQL pool and compute is automatically scaled, queries tend to run slower (a factor 
of seconds or minutes) than queries executed against a dedicated SQL pool. For this reason, 
dedicated SQL pools are a better option for workloads that require optimized and consistent 
performance requirements.

Exploratory Analysis with Serverless SQL Pools
Synapse Studio makes it easy to start analyzing data with the serverless SQL pool by cre-
ating a new SQL script. To do this, click on the Develop button on the left-side toolbar and 
click on the + icon. Select SQL script to open a new SQL script window. Within the script 
window, you can write SQL scripts that use the serverless SQL pool or one of the dedicated 
SQL pools associated with the workspace. The properties pane on the right side of the script 
window allows you to rename the script and add a description that explains the function-
ality of the script. You can also save scripts in Synapse Studio or to an associated Git reposi-
tory by clicking Publish All at the top of the script window. Figure 5.47 illustrates the layout 
of the SQL script window.

F IGURE 5 .47   Synapse Studio SQL script window

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/tutorial-logical-data-warehouse
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/tutorial-logical-data-warehouse


End-to-End Analytics with Azure Synapse Analytics  289

The ribbon at the top of the SQL script window includes several options for running a 
script, viewing a query’s execution plan (exclusive to dedicated SQL pools), connecting to a 
SQL pool, and setting the database context. To execute queries with the serverless SQL pool 
endpoint, make sure the “Built-in” SQL pool is chosen in the Connect To drop-down menu 
(see Figure 5.48).

Before going over how to run queries in Synapse Studio, let’s briefly discuss the basic 
structure of a serverless SQL pool query. Serverless SQL pool queries that perform explor-
atory analysis rely heavily on the OPENROWSET function to read data from external 
storage devices. For example, the following query uses the OPENROWSET function to 
retrieve the first 100 entries of the publicly available New York City yellow taxicab dataset.

SELECT TOP 100 * FROM
    OPENROWSET(
        BULK 'https://azureopendatastorage.blob.core.windows.net/
nyctlc/yellow/puYear=*/puMonth=*/*.parquet',
        FORMAT='PARQUET'
    ) AS [nyc]

The BULK parameter specifies the location of the data while FORMAT specifies the file 
format of the data being read. The URL location used by the query also uses wildcards (*) to 
read all of the Parquet files in all of the year and month folders.

This query also uses the column metadata in the Parquet files to infer the column names 
and data types of the result set. Queries can also automatically infer the column names of 
data from CSV files if there is a header row. However, there are times where you will want to 
explicitly define a schema to have more control of the data. Explicitly defining a schema also 
allows you to specify what columns you want to read from the files. You can define a schema 
for your data by adding a WITH clause with the column names and data types at the close 
of the OPENROWSET command. The following example uses the WITH clause to explicitly 
return three columns from the New York City yellow taxicab dataset.

SELECT TOP 100 * FROM
    OPENROWSET(
        BULK 'https://azureopendatastorage.blob.core.windows.net/

F IGURE 5 .48   Choosing the Built-in SQL pool



290  Chapter 5  ■  Modern Data Warehouses in Azure

nyctlc/yellow/puYear=*/puMonth=*/*.parquet',
        FORMAT='PARQUET'
    ) WITH (
        tpepPickupDateTime DATETIME2,
        passengerCount INT,
        tripDistance FLOAT
    ) AS [nyc]

Passing the entire storage URL into the BULK parameter is a quick and easy way to read 
the content of the files with basic authentication methods such as Azure AD authentication 
for Azure AD logins or from files that are publicly available. However, this option provides 
limited authentication options and can become tedious as it forces developers to add the 
storage URL to the BULK parameter when they query the storage account. A more repeat-
able and secure option is to persist the location as an external data source and the access cre-
dential as an external scoped credential in a serverless SQL pool logical database.

The following example creates a new logical database and an external data source  
that references the location of the New York City yellow taxicab dataset. You can then  
pass the external data source name to the optional DATA_SOURCE parameter in the  
OPENROWSET command. This allows you to alter the argument passed to the BULK 
parameter to only the folder path that needs to be queried.

CREATE DATABASE dp900_serverlessdb;
 
USE dp900_serverlessdb
GO;
CREATE EXTERNAL DATA SOURCE nyc_yellowcab
WITH
(
    location = 'https://azureopendatastorage.blob.core.windows.net/
nyctlc/yellow/'
);
 
SELECT TOP 100 * FROM
    OPENROWSET(
        BULK 'puYear=*/puMonth=*/*.parquet',
        DATA_SOURCE='nyc_yellowcab',
        FORMAT='PARQUET'
    ) WITH (
        tpepPickupDateTime DATETIME2,
        passengerCount INT,
        tripDistance FLOAT
    ) AS [nyc]



End-to-End Analytics with Azure Synapse Analytics  291

This script can be executed in the Synapse Studio SQL script window by clicking the Run 
button at the top of the window. Figure 5.49 shows the SQL script window and the results 
from the executed script.

More information about how to use OPENROWSET to query external data with a 
serverless SQL pool can be found at https://docs.microsoft.com/en-us/azure/
synapse-analytics/sql/develop-openrowset.

F IGURE 5 .49   Executing Serverless SQL Pool Queries in Synapse Studio

https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-openrowset
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-openrowset


292  Chapter 5  ■  Modern Data Warehouses in Azure

Summary
This chapter started by discussing different types of data workflows. Transactional systems, 
also known as online transaction processing (OLTP) systems, capture business transactions 
such as sales in a point-of-sale system. They are optimized to handle write-heavy workloads, 
often handling millions of transactions a day. Analytical systems differ from transactional 
systems in that they are optimized for read-heavy operations. Data is gathered from several 
source systems and consolidated in one or a few data stores that users can use for reports, ad 
hoc analysis, and data science projects.

Analytical systems can process data in batches or as a continuous stream of data. Batch 
processing involves processing large amounts of data at predetermined periods of time or 
after a specified event. Stream processing ingests and transforms data in real time as it is 
generated. Modern data architectures like the Lambda architecture make it easy to use both 
batch and stream processing in the same solution.

There are several services offered through Azure that data engineers can use when 
building a modern data warehouse solution. Azure HDInsight is a PaaS resource that can 
be used to build data processing pipelines with several popular open-source frameworks 
such as Apache Hadoop, Apache Spark, Apache Kafka, Apache HBase, Apache Interactive 
Query, and Apache Storm. Azure Databricks is another PaaS resource that provides a unified 
platform for data engineers building data processing pipelines with Databricks Spark. Data-
bricks Spark is a highly optimized version of Apache Spark, making it the most ideal service 
for most Spark applications.

Azure HDInsight, Azure Databricks, and several other data movement and data trans-
formation activities can be orchestrated with Azure Data Factory (ADF). ADF enables 
data engineers to build data engineering pipelines with the Azure Data Factory Studio, a 
drag-and-drop, low-code/no-code development environment. Developers can author data 
movement and data transformation activities to run in parallel or chain them together 
so that they run sequentially. Because ADF is a PaaS offering, compute infrastructure is 
abstracted from the user in the form of an integration runtime. However, users can choose 
to use their own compute infrastructure by installing a self-hosted integration runtime on a 
virtual machine. This allows users to leverage data sources that are located in on-premises 
and private networks.

Organizations that want to use a single platform to achieve end-to-end analytics can do 
so with Azure Synapse Analytics. With Azure Synapse Analytics, users can use the Synapse 
Studio to manage all aspects of the data processing life cycle. Developers can author low-
code/no-code data integration pipelines to move and transform data, leverage the serverless 
SQL pool to explore operational and object data stores with T-SQL without moving the 
data, build scale-out data engineering solutions with Apache Spark pools, and store report-
ready data in relational tables that are optimized to serve analytical queries with a dedicated 
SQL pool.



Exam Essentials  293

Exam Essentials
Describe the difference between transactional and analytical workloads.  Transactional sys-
tems are used to capture the business transactions that support the day-to-day operations 
of a business, while analytical systems turn transactional data and other data sources into 
information that is used to make decisions. Remember that transactional data is highly nor-
malized to support write operations, and analytical data is denormalized to support read 
operations. Depending on the use case, analytical workloads can store data in a relational 
data warehouse such as Azure Synapse Analytics dedicated SQL pool or as files in an 
enterprise data lake such as ADLS.

Describe batch and stream processing.  Data engineers can build data processing pipelines 
with one or a combination of two techniques: batch processing and stream processing. For 
the DP-900 exam, remember that batch processing workflows process data in batches dur-
ing a predetermined period of time or after a specific event. Stream processing workflows 
ingest and transform continuous streams of data in real time. Know the technologies that 
were listed for each component of the two processing types. Also remember that modern, 
cloud-based architectures make it easy to implement batch processing and stream processing 
workflows in the same solution.

Describe data warehouse features.  Remember that data warehouses store data that is opti-
mized for analytical queries and are commonly used as the single source of truth for data 
that is important to a business department’s decision making. Data models follow the star 
schema design pattern, where business entities and descriptors related to them are stored in 
dimension tables and measured events related to business entities are stored in fact tables.

Describe Azure HDInsight.  Azure HDInsight is a managed, open-source analytics ser-
vice in Azure that can be used to deploy distributed clusters for Apache Hadoop, Apache 
Spark, Apache Interactive Query/LLAP, Apache Storm, Apache Kafka, and Apache HBase. 
Remember that unlike Azure Databricks and Azure Synapse Analytics Apache Spark pools, 
Azure HDInsight clusters cannot be paused. You will need to destroy the cluster and build 
a new one with an automation script to manage Azure HDInsight costs. For this and other 
management reasons, it is recommended that you use other Azure services like Azure Data-
bricks, Azure Synapse Analytics, and the Azure Event Hubs Kafka endpoint for distributed 
analytics.

Describe Azure Databricks.  Azure Databricks is a unified analytics platform that supports 
optimized Spark clusters for batch and stream processing. The platform is a PaaS resource 
that provides a native notebook environment that developers can use to build Spark work-
flows with SQL, Python, Java, or R. Remember that Databricks clusters use Azure VMs for 
compute nodes and that processing is measured as Databricks Units (DBUs). Databricks 
clusters can be configured as dedicated compute for single user, prescheduled processing jobs 
(Single Node or Standard), or to run concurrent workloads for multiple users performing 
interactive analysis (High Concurrency). Remember that you can establish a connection with 



294  Chapter 5  ■  Modern Data Warehouses in Azure

an Azure storage account by creating a mount point or by using a service principal to con-
nect via a direct path. ADLS accounts can also be accessed directly with Azure AD credential 
passthrough.

Describe Azure Data Factory.  Azure Data Factory (ADF) is a managed cloud service that 
can be used to build complex ETL, ELT, and data integration projects. ADF instances pro-
vide data engineers with a platform to author no-code data movement and data transforma-
tion activities and run them sequentially or in parallel with pipelines. ADF pipelines can be 
executed manually or automatically via a schedule or an event-based trigger. Users can define 
connections to over 90 data sources and compute resources as linked services. Linked ser-
vices that are created for data sources can be used to represent specific data structures within 
data stores, such as a relational database table or a set of files. Remember that integration 
runtimes are the compute infrastructure that power pipeline activities. Integration runtimes 
come in three types: one for Azure resources that are accessible via a public endpoint, a self-
hosted integration runtime for on-premises resources or Azure resources that are only acces-
sible through a private network, and an SSIS specific integration runtime that allows users to 
run legacy SSIS packages in an ADF pipeline.

Describe Azure Synapse Analytics.  Azure Synapse Analytics is an enterprise analytics 
system that unifies multiple services that serve analytical workloads in a single environment. 
Within Synapse Studio, data engineers can use Synapse pipelines to automate data movement 
and processing activities, a dedicated SQL pool as an analytical data store to manage data 
that will need to quickly serve reports and analytical applications, a serverless SQL pool to 
interactively query data in Azure Storage, an Apache Spark pool to perform data engineering 
activities with Spark, and a Data Explorer pool to analyze telemetry data in near real time. 
Analysts can also link a Power BI workspace to an Azure Synapse Analytics workspace to 
build reports in the same environment that they manage data and write queries.



Review Questions  295

Review Questions
1.	 Is the italicized portion of the following statement true, or does it need to be replaced with 

one of the other fragments that appear below? Relational databases that serve transactional 
workloads often use a star schema as their data model strategy. This modeling pattern is 
optimal for write-heavy operations.

A.	 1NF

B.	 3NF

C.	 2NF

D.	 No change needed

2.	 Which of the following data storage options are appropriate for data scientists and analysts 
to use when analyzing business data?

A.	 Data warehouses

B.	 OLAP models

C.	 Enterprise data lakes

D.	 All of the above

3.	 What open-source technology provides ACID properties on data stored in ADLS?

A.	 Delta Lake

B.	 Parquet

C.	 Apache Spark

D.	 Hadoop

4.	 Which of the following services is not used in a batch processing workflow?

A.	 Azure Databricks

B.	 Azure Stream Analytics

C.	 Azure Synapse Analytics

D.	 Azure Data Factory

5.	 You are designing a data warehouse that will serve as the single source of truth for a venue 
management company. The data warehouse’s data model will use a star schema so that it is 
optimized for reporting tools and analytical queries. Using this design pattern, what type of 
tables will store concession and retail sales metrics?

A.	 Dimension tables

B.	 Materialized views

C.	 Fact tables

D.	 Composite tables



296  Chapter 5  ■  Modern Data Warehouses in Azure

6.	 You are designing a stream processing pipeline for an IoT workflow. The solution will  
use Apache Spark structured streaming to process the data, but it requires a highly scalable 
service to act as the real-time message ingestion engine. Which of the following Azure  
HDInsight cluster types is a viable option to ingest large volumes of streaming data?

A.	 Apache Hadoop

B.	 Apache Spark

C.	 Apache Kafka

D.	 Apache Storm

7.	 Which of the following statements about Azure Databricks is false?

A.	 Azure Databricks cannot read data from a real-time ingestion engine like Azure Event 
Hubs or Apache Kafka.

B.	 Administrators can leverage their existing Azure Active Directory infrastructure to manage 
user access control for Databricks-specific objects such as notebooks, clusters, and jobs.

C.	 Azure Databricks can read and write data from Azure data stores such as Azure Blob 
Storage, ADLS, Azure SQL Database, and Azure Synapse Analytics dedicated SQL pools.

D.	 When creating a Spark cluster in Azure Databricks, users can set a time period that 
Azure Databricks will use to automatically terminate the cluster when idle.

8.	 Which of the following components is not used when calculating the cost of an Azure Data-
bricks cluster?

A.	 Azure VM price

B.	 Price of DBUs consumed

C.	 Azure Databricks workspace price

D.	 None of the above

9.	 You are deploying a new Azure Databricks workspace that will be used by data engineers 
and data scientists at your company. Clusters deployed to the workspace will need to be able 
to connect to Azure services that are assigned private endpoints. You are also required to 
configure Azure Databricks so that cluster nodes do not have public IP addresses. Which of 
the following options is the recommended solution for meeting the listed requirements?

A.	 Enable VNet injection on the workspace so that all cluster nodes run on one of your 
VNets. This will allow you to easily connect clusters to services using private endpoints. 
VNet injection uses all private IP addresses by default.

B.	 Enable VNet injection on the workspace so that all cluster nodes run on one of your 
VNets. This will allow you to easily connect clusters to services using private endpoints. 
Enable secure cluster connectivity to change the public subnet to private.

C.	 Enable VNet injection on the workspace so that all cluster nodes run on one of your 
VNets. This will allow you to easily connect clusters to services using private endpoints. 
Enable private link to change the public subnet to private.

D.	 Use VNet peering to peer the Databricks-managed VNet with the VNet that hosts the private 
endpoints you are connecting to. VVet injection uses all private IP addresses by default. Enable 
secure cluster connectivity to ensure that only private IP addresses are used.



Review Questions  297

10.	 Which of the following Git providers are supported by Azure Databricks?

A.	 Bitbucket

B.	 GitHub

C.	 Azure DevOps

D.	 All of the above

11.	 You are configuring an Azure Databricks cluster that will be used by several analysts and 
data scientists. Because users will be running interactive workloads sporadically, the cluster 
must be able to support concurrent requests. Which cluster mode should you define for 
this cluster?

A.	 Standard

B.	 High Concurrency

C.	 Single User

D.	 Interactive

12.	 Which of the following is not a component that can be manually created after an Azure Syn-
apse Analytics workspace is deployed?

A.	 Serverless SQL pool

B.	 Dedicated SQL pool

C.	 Data Explorer pool

D.	 Apache Spark pool

13.	 You are designing a solution that will analyze operational data that is stored in an Azure 
Cosmos DB Core (SQL) API database. The solution must be near real time, but it must also 
minimize the impact on the performance of the operational data store. Which of the follow-
ing options is the most appropriate for this scenario?

A.	 Enable Azure Synapse Link to synchronize your transactional data from Azure Cosmos 
DB to a column-oriented analytical data store and use an Azure Synapse Analytics 
serverless SQL pool to analyze the data.

B.	 Create an Azure Data Factory copy activity to copy the data from Azure Cosmos DB to 
an Azure Synapse Analytics dedicated SQL pool.

C.	 Create an Azure Data Factory copy activity to copy the data from Azure Cosmos DB to 
an Azure Synapse Analytics serverless SQL pool.

D.	 Enable Azure Synapse Link to synchronize your transactional data from Azure Cosmos 
DB to a column-oriented analytical data store and use an Azure Synapse Analytics data 
explorer pool to analyze the data.

14.	 How many additional Azure Synapse Analytics serverless SQL pools can be added to a single 
workspace?

A.	 1

B.	 10

C.	 0

D.	 5



298  Chapter 5  ■  Modern Data Warehouses in Azure

15.	 You are the administrator for an Azure Synapse Analytics dedicated SQL pool. Table dis-
tribution and index design are optimized to meet the workload needs of the queries that 
are frequently executed against the database. You have recently been asked to improve the 
performance of a query that is run regularly. When enabled, which of the following features 
will immediately improve the query’s performance by caching the results for later use?

A.	 Result set caching

B.	 Query store

C.	 Extended events

D.	 Clustered columnstore index

16.	 Which of the following is a common use case for an Azure Synapse Analytics server-
less SQL pool?

A.	 Performing exploratory analysis of Azure Storage data with T-SQL queries

B.	 Creating a logical data warehouse that maintains an up-to-date view of data by 
providing a relational schema on top of raw data stored in Azure Storage without 
moving data

C.	 Transforming ADLS data with T-SQL and serving the transformed data to Power BI or a 
persistent data store like Azure SQL Database

D.	 All of the above

17.	 What T-SQL function allows you to read the content of files stored in Azure Storage with a 
serverless SQL pool?

A.	 OPENQUERY

B.	 OPENROWSET

C.	 OPENDATASOURCE

D.	 OPENEXTERNALDATA

18.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? A Serverless SQL pool is an analytical data 
store that uses a scale-out architecture to distribute data processing across multiple nodes. 
It is optimized to serve large amounts of historical data very quickly to data analysts and BI 
applications and is typically used as the single source of truth for business insights.

A.	 Dedicated SQL pool

B.	 Data Explorer pool

C.	 Apache Spark pool

D.	 No change needed

19.	 What type of Azure Data Factory activity is used to manage the flow of a pipeline?

A.	 Data movement activity

B.	 Control activity

C.	 Data transformation activity

D.	 Compute activity



Review Questions  299

20.	 Which of the following options can you use with an ADF copy activity to define what data is 
copied from an Azure SQL Database table?

A.	 The entire table

B.	 The result set from a query

C.	 The result set from a stored procedure

D.	 All of the above

21.	 You are the lead data engineer for a company that is modernizing its existing data platform 
to Azure. One part of the modernization effort is to lift and shift existing SSIS packages to 
Azure and use PaaS infrastructure to run the SSIS packages. Which of the following is a valid 
approach in Azure while minimizing infrastructure overhead?

A.	 Deploy the existing packages to an SSISDB database hosted on an Azure SQL Database 
and execute them with the SQL Server Agent.

B.	 First, deploy the existing packages to an SSISDB database hosted on Azure SQL Data-
base. Next, create an Azure-SSIS integration runtime in an Azure Data Factory instance 
and use the Execute SSIS Package activity with the integration runtime to run the SSIS 
packages.

C.	 Deploy the existing packages to an SSISDB database hosted on a SQL Server Azure VM 
and execute them with the SQL Server Agent.

D.	 First, deploy the existing packages to an SSISDB database hosted on Azure SQL Data-
base. Next, create a self-hosted integration runtime in an Azure Data Factory instance 
and use the Execute SSIS Package activity with the integration runtime to run the SSIS 
packages.

22.	 ADF pipelines can be deployed manually, at a scheduled time, and after which one of the fol-
lowing event types?

A.	 After a blob is uploaded to Azure Blob storage

B.	 After a new row of data is inserted into a SQL Server database table

C.	 After a new item is added to an Azure Cosmos DB database container

D.	 All of the above

23.	 You are designing a data ingestion strategy that uses PolyBase to load CSV data from ADLS 
into an Azure Synapse Analytics dedicated SQL pool. When defining the external file format, 
what argument and terminator character should you use to indicate the end of each field in 
the files?

A.	 FIELD_TERMINATOR = '|'
B.	 STRING_TERMINATOR = '|'
C.	 STRING_TERMINATOR = ','
D.	 FIELD_TERMINATOR = ','



300  Chapter 5  ■  Modern Data Warehouses in Azure

24.	 You are building a data ingestion solution that will perform a one-time load of ORC data 
from ADLS into an Azure Synapse Analytics dedicated SQL pool staging table. Which of the 
following options provides the best performance for this use case?

A.	 Build the solution using PolyBase constructs, creating an external table that provides a 
schema for the ORC data. Once the external table is created, use a CTAS statement to 
create the staging table based on the PolyBase external table.

B.	 Copy the data into the staging table using the bulk copy program (bcp) utility.

C.	 Copy the data into the staging table using a COPY statement.

D.	 Copy the data into the staging table using AzCopy.



Reporting 
with Power BI

MICROSOFT EXAM OBJECTIVES COVERED 
IN THIS CHAPTER:

✓✓ Describe data visualization in Microsoft Power BI.

■■ Describe the role of paginated reporting.

■■ Describe the role of interactive reports.

■■ Describe the role of dashboards.

■■ Describe the workflow in Power BI.

Chapter 

6



Chapter 1, “Core Data Concepts,” introduces different data 
processing techniques and several popular data visualizations 
such as tables, matrices, pie charts, column charts, line charts, 

scatter plots, and maps. Chapter 5, “Modern Data Warehouses in Azure,” describes different 
data processing services and analytical data stores. This chapter builds on these lessons by 
exploring how Power BI can be used to ingest data from different data stores and analyze 
data with visualizations, reports, and dashboards.

Power BI at a Glance
Power BI is often thought of as a powerful reporting tool that can be used to analyze data 
with a rich suite of data visualizations. While this is true, Power BI offers so much more. 
Analysts and business intelligence (BI) practitioners with varying technical expertise can use 
Power BI to ingest, cleanse, model, analyze, and visualize data from over 130 different data 
sources. Citizen data scientists can also use built-in AI-related features such as the Key Influ-
encers visualization and AI Insights to gain insights beyond what can be gained from tradi-
tional descriptive and diagnostic analysis.

The range of scenarios that Power BI can be used for is nearly limitless. Self-service BI 
developers can ingest data from a large data warehouse like an Azure Synapse Analytics ded-
icated SQL pool into a Power BI model using the Power BI desktop tool and mold the data 
into an easy-to-use OLAP model. Analysts can also use the service to ingest operational and 
analytical data stores into the same Power BI model to discover additional features that can 
be added to a modern data warehouse. Reports that are ready for wide-scale consumption 
can be published to a central workspace online or on-premises where they can be shared 
with any user who needs access to the reports.

While Power BI consists of several core components, the three most basic elements are 
as follows:

■■ Power BI Desktop—A free Windows desktop application that is used to ingest data, 
build data models, and author interactive reports. This tool can also be used to publish 
datasets and reports to the Power BI service or a Power BI Report Server where they  
can be shared or collaborated on with other users. You can download a free copy of  
the Power BI Desktop by clicking the Download Free button at https://powerbi 
.microsoft.com/en-us/desktop.

■■ Power BI service—An online Software as a Service (SaaS) platform that can be used to 
host Power BI resources such as datasets, reports, and dashboards. These resources can 

https://powerbi.microsoft.com/en-us/desktop
https://powerbi.microsoft.com/en-us/desktop


Power BI at a Glance  303

be shared with other users so that they can view and interact with them. Analysts  
and BI practitioners can create workspaces within the Power BI service (also referred 
to as Power BI online) where they can invite other users to collaborate on reports and 
dashboards. You can sign up for a free trial of the Power BI service by clicking the  
Try Power BI for Free button at https://powerbi.microsoft.com/en-us/
getting-started-with-power-bi.

■■ Power BI mobile app—These are mobile applications where users can view and interact 
with reports via a mobile device. The mobile app is supported by Windows, iOS, and 
Android operating systems.

Power BI also consists of two elements that are used to build traditional reporting 
solutions:

■■ Power BI Report Builder—A free Windows desktop application that is used to cre-
ate traditional paginated reports. These can be uploaded to either the Power BI service 
or a Power BI Report Server. You can download a free copy of the Power BI Report 
Builder by clicking the Download button at www.microsoft.com/en-us/ 
download/details.aspx?id=58158.

■■ Power BI Report Server—An on-premises report server where report creators can 
publish their Power BI reports after creating them in Power BI Desktop or Power BI 
Report Builder.

Because Power BI is briefly covered on the DP-900 exam, the following sections will only 
cover the core Power BI components at a high level. However, understanding how and when 
to use these components will provide the fundamental knowledge necessary to start working 
with Power BI.

Working with Power BI
Before we explore the use cases for different report types and dashboards, let’s examine the 
common steps that most Power BI workflows follow:

1.	 Ingest data from one or more data sources.

2.	 Transform data to fit the specific needs of the reports being built.

3.	 Build a data model.

4.	 Define calculations that answer business-specific questions.

5.	 Author reports.

6.	 Publish the reports.

7.	 Create dashboards with visualizations from one or more reports to summarize different 
business views.

8.	 Share the reports and dashboards with business users who will consume and make 
decisions based off of the information presented.

https://powerbi.microsoft.com/en-us/getting-started-with-power-bi
https://powerbi.microsoft.com/en-us/getting-started-with-power-bi
https://www.microsoft.com/en-us/download/details.aspx?id=58158
https://www.microsoft.com/en-us/download/details.aspx?id=58158


304  Chapter 6  ■  Reporting with Power BI

In addition to the conceptual workflow that is used throughout most 
Power BI use cases, the Power BI service allows BI developers to manage 
the life cycle of their Power BI content with the deployment pipelines tool. 
This tool is designed as a pipeline with three stages (development, test, 
and production) to enable report creators to develop and test Power BI 
content in the Power BI service before sharing content to business users. 
More information about Power BI deployment pipelines can be found at 
https://docs.microsoft.com/en-us/power-bi/create-reports/
deployment-pipelines-overview.

Although they follow similar workflows, interactive and paginated reports require very 
different approaches when being built, which will be discussed in the sections “Interac-
tive Reports” and “Paginated Reports” later in this chapter. The tools and methods used to 
ingest, transform, and visualize data are very different for interactive and paginated reports.

Interactive reports are far and away the most sophisticated and feature-rich of the two 
Power BI report types. In fact, when first released in 2015, interactive reports were the only 
type of reports that users could build with Power BI. The ability to author, publish, and share 
paginated reports with Power BI was not supported until several years later in 2019. For this 
reason, the steps used by most Power BI workflows are intended for interactive reports.

The following sections will examine the full life cycle of an interactive report, before 
describing the roles of dashboards and paginated reports in Power BI.

Interactive Reports
Interactive reports are collections of data visualizations and filters that reveal insights from 
a dataset. As the name implies, they are designed to be “interactive,” meaning that users can 
filter and slice the data by interacting with any of the visuals or filters on the report. A single 
report can have several pages, each filled with content that focuses on different aspects of 
the dataset being analyzed. The next two sections explore how to create an interactive report 
through Power BI Desktop and publish the report to the Power BI service for sharing and 
collaboration.

Creating Interactive Reports with Power BI Desktop

While it is possible to develop interactive reports through the Power BI service, the preferred 
tool for authoring interactive reports is Power BI Desktop. This is a completely free tool that 
can be downloaded from the following link: https://powerbi.microsoft.com/ 
en-us/desktop.

You will need a different version of Power BI Desktop if you plan on pub-
lishing your reports to Power BI Report Server instead of the Power BI 
service. This version of Power BI Desktop can be downloaded from the 
Power BI Report Server web portal. Power BI Report Server can be down-
loaded from the following link: www.microsoft.com/en-us/download/
details.aspx?id=57270.

https://docs.microsoft.com/en-us/power-bi/create-reports/deployment-pipelines-overview
https://docs.microsoft.com/en-us/power-bi/create-reports/deployment-pipelines-overview
https://powerbi.microsoft.com/en-us/desktop
https://powerbi.microsoft.com/en-us/desktop
https://www.microsoft.com/en-us/download/details.aspx?id=57270
https://www.microsoft.com/en-us/download/details.aspx?id=57270


Power BI at a Glance  305

Once you have downloaded, installed, and opened Power BI Desktop, it will ask you 
to sign into a Power BI account. Feel free to skip this step if you are not going to publish 
reports to the Power BI service.

The Power BI Desktop UI has a similar look and feel to Microsoft Office products such as 
Microsoft Excel. The ribbon at the top of the canvas allows you to connect to different data 
sources, create custom measures and columns, and perform different tasks that are specific to 
the different Power BI Desktop views. There are three views available in Power BI Desktop, 
all of which can be accessed on the left side of the canvas. The following is a list of the views 
in the order that they appear:

■■ Report—In this view report creators can build and modify interactive reports. This view 
includes several tool panes on the right side of the UI that report creators can use to 
build new data visualizations and choose what pieces of data are displayed on the page. 
At the bottom of this view, there is a tab labeled “Page 1” next to a + sign. Interactive 
reports can have several pages as a means of organizing content for different topics.

■■ Data—This view displays all tables, measures, data fields that are used in the data 
model. This view also allows users to transform data for best use by the report’s 
data model.

■■ Model—This view allows users to see and edit the relationships among the tables in the 
data model.

Figure 6.1 illustrates a blank report on the Report view and highlights where you can 
access the other views.

F IGURE 6 .1   A blank report in the Power BI Desktop Report view. You can switch views by 
clicking one of the options on the left side of the canvas.



306  Chapter 6  ■  Reporting with Power BI

The first step in building an interactive report is to connect to one or more data sources. 
To do this, click the Get Data button in the Home ribbon at the top of the canvas. This will 
open the Get Data page (see Figure 6.2), displaying the many data sources that Power BI can 
connect to. Power BI Desktop groups its data in the following categories:

■■ File—This category includes common file sources, such as Excel, CSV, JSON, and 
PDF files.

■■ Database—This category includes several popular database services, including SQL 
Server, Access, Oracle, MySQL, PostgreSQL, SAP HANA, Amazon Redshift, Teradata, 
and MariaDB.

■■ Power Platform—This category provides connectivity to the Microsoft Power Platform 
ecosystem, including Power BI datasets and dataflows as well as Dataverse.

■■ Azure—This category contains connectors to the most popular Azure data services, 
including Azure SQL Database, Azure Synapse Analytics SQL pools (both dedicated and 
serverless), Azure Blob Storage, ADLS, Azure Databricks, and Azure Cosmos DB.

■■ Online Services—This category contains connectors to popular SaaS platforms like 
SharePoint Online lists, Microsoft Exchange Online, Dynamics 365, Salesforce, and 
Google Analytics.

■■ Other—This category contains connectors for services that do not fall in any specific 
category, such as Active Directory, SharePoint lists, Solver, and Apache Spark. It also 
includes generic interfaces such as ODBC, OLE DB, OData, and REST APIs to expand 
Power BI’s connectivity options to any service that is accessible via those interfaces. 
Finally, users can leverage existing R or Python scripts to access data sources through 
the R script or Python script connector.

After you select a connector type, Power BI will open a prompt that requests access 
information specific to that connector. Most connector types will also ask whether to import 
a copy of the data into Power BI’s in-memory data store or leave the data in its source 
system where it is queried dynamically every time the report is interacted with. Power BI 
supports the following data connectivity types:

■■ Import—This data connectivity type will load all of the data objects selected into the 
Power BI cache. This is the most performant data connectivity option as any visual that 
is built off of imported data will query the cache every time it is interacted with. The 
imported data is packaged with the data model, and reports that are published to the 
Power BI service or Power BI Report Server will also publish the imported data as a 
dataset. Changes that are made to the source data store are not automatically reflected, 
making it necessary to manually refresh a dataset or scheduling it to be refreshed during 
predefined time periods.

■■ DirectQuery—This data connectivity type does not load data from the source data store 
into Power BI. Instead, Power BI creates a reference to the data objects selected and 
queries the data source every time a data visualization is interacted with. While there 
are no storage limitations with this option, there are performance implications as every 
interaction with a data visualization results in a query being issued against the source 



Power BI at a Glance  307

data store. DirectQuery is usually used instead of importing data when data is changing 
frequently and near-real-time reporting is needed, and when the volume of data being 
reported on is very large, making it cumbersome to import all of it.

■■ Live connections—This data connectivity type is similar to DirectQuery but is specific to 
connectors that use the same storage engine as Power BI, such as Azure Analysis Services 
and SQL Server Analysis Services.

Power BI allows users to mix different connectivity types, resulting in composite data 
models. Composite models consist of two or more data connections from different data 
sources. For example, a report creator can use DirectQuery to connect to an Azure Syn-
apse Analytics dedicated SQL pool to minimize the size of the Power BI dataset and 
import reference data from a CSV file to optimize report performance. While this is use-
ful, not all data sources can be used in a composite model. More information about 

F IGURE 6 .2   Get Data page



308  Chapter 6  ■  Reporting with Power BI

composite model limitations can be found at https://docs.microsoft.com/en-us/
power-bi/transform-model/desktop-composite-models#considerations-and-
limitations.

Composite models can also be created by establishing two or more data 
connections to the same data source. This is useful if you are creating 
a data model from a data warehouse that has very large fact tables. By 
creating a composite model, you can import the dimension tables for the 
best report performance (such as dimension features that are used in fil-
ters and slicers) and establish a DirectQuery connection to the fact tables 
to limit the size of the data model.

By selecting the Azure SQL Database connector, you can connect to the 
dp900sql001 logical server and the dp900sql001 database that were created in Chapter 2, 
“Relational Databases in Azure.” As you can see in Figure 6.3, by expanding the Advanced 
Options setting on the SQL Server database pop-up window, you can use a T-SQL query to 
retrieve the data you want added to the data model. After clicking OK, you will be asked to 
authenticate to the Azure SQL Database instance.

F IGURE 6 .3   SQL Server database connection page

https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-composite-models#considerations-and-limitations
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-composite-models#considerations-and-limitations
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-composite-models#considerations-and-limitations


Power BI at a Glance  309

If you do not use a query to retrieve data from the database, Power BI will open a new 
prompt that will allow you to select one or more tables or views to import or reference (see 
Figure 6.4). This example will import the SalesLT.Product, SalesLT.ProductCategory, and 
SalesLT.SalesOrderDetail tables from the database into the dataset. Click Transform Data 
after selecting the tables to use Power BI’s Power Query Editor to modify data before it is 
loaded into Power BI.

The Power Query Editor enables report creators to preprocess data to meet report 
requirements. Users can apply several transformations to the data, such as changing column 
data types, removing rows based on specific criteria, splitting columns, pivoting rows into 
columns and vice versa, applying mathematical functions to columns, and parameterizing the 
dataset to make it more dynamic. The Power Query Editor can also apply machine learning 
transformations by connecting to an Azure Machine Learning model, by invoking an Azure 
Cognitive Services API, or by running an R or a Python script against the data.

F IGURE 6 .4   Select the tables or views that will be imported into the Power BI 
data model.



310  Chapter 6  ■  Reporting with Power BI

As you can see in Figure 6.5, the Power Query Editor is divided into the following four 
main components:

■■ In the ribbon at the top of the page, there are several buttons available to apply trans-
formation steps to the data.

■■ In the left pane, each table/view selected is presented as a query. Users can switch back 
and forth between queries to apply different transformations to each one. Keep in mind 
that if you use a T-SQL query to establish the connection to the data source, then the 
data source will be presented as a single query in the Power Query Editor.

■■ In the center pane, data from the selected query is displayed and is available for shaping.

■■ The Query Settings pane on the right of the page displays all of the transformation steps 
applied to the query. This pane also allows users to rename the query to a more user-
friendly name.

Keep in mind that data transformations made with the Power Query 
Editor are not reflected in the source system but are applied as steps over 
the data as it is imported (or queried if the connectivity type is Direct-
Query).

Transformations that are applied through the Power Query Editor are translated to M 
code. M is the formula language used by the Power Query engines in Analysis Services (both 

F IGURE 6 .5   Power Query Editor



Power BI at a Glance  311

Azure and SQL Server Analysis Services), Excel, and Power BI to apply data transforma-
tions to connected data sources. The Power Query Editor allows users to view the M code 
by clicking the Advanced Editor button in the ribbon at the top of the page. It also lets users 
edit the code and add transformation steps or parameters that are not exposed through the 
Power Query Editor UI. Figure 6.6 is an example of the Advanced Editor and the M code 
that is generated to connect to the SalesLT.SalesOrderDetail table. The code also applies a 
single transformation that changes the LineTotal column data type.

Click Close & Apply in the ribbon at the top of the page to load the data after you are 
satisfied with the data model. You can revisit the Power Query Editor to add or modify data 
transformation steps at any time by clicking the Transform Data button in the Home ribbon.

If you go to the Model view in Power BI Desktop, you will see that Power BI has inferred 
a one-to-many relationship between the Product and Sales Order Detail tables and a one-
to-many relationship between the Product Category and Product tables (see Figure 6.7). 
These relationships are proposed based on common field names and can be altered through 
the Manage Relationships button in the Home ribbon. At the bottom of the view, users can 
create additional tabs that focus on different subsets of tables. The All Tables tab is created 
automatically to display the relationships between all tables in the model.

Additional relationships can also be established between tables. Because 
two tables can only have one active relationship at a time, additional 
relationships that are not used are configured to be inactive. Inac-
tive relationships can only be made active during the evaluation of the 
USERELATIONSHIP() DAX function in a custom model calculation. More 
information on the USERELATIONSHIP() function can be found at https://
docs.microsoft.com/en-us/dax/userelationship-function-dax.

F IGURE 6 .6   M Code can be viewed and edited through the Power Query 
Advanced Editor.

https://docs.microsoft.com/en-us/dax/userelationship-function-dax
https://docs.microsoft.com/en-us/dax/userelationship-function-dax


312  Chapter 6  ■  Reporting with Power BI

Before moving to the Data view, it is important to note how Power BI manages imported 
data. Power BI use an in-memory storage engine that stores data as tabular models, just like 
Azure Analysis Services and the SQL Server Analysis Services tabular mode. Tabular models 
use relational constructs like rows and columns to manage data. The VertiPaq engine used to 
power tabular models leverages modern compression algorithms to ensure fast performance 
for data retrieval and custom calculations. Tabular models support Data Analysis Expression 
(DAX) formulas to create custom calculations such as measures or calculated columns.

While not in scope for the DP-900 exam, it is important to understand how 
to create custom calculations with DAX functions if you want to become 
proficient in Power BI. You can start learning more about these topics by 
completing the following learning path: https://docs.microsoft.com/
en-us/learn/paths/dax-power-bi.

Navigate to the Data view to see the imported data in tabular format; it can be broken 
down into the following components (see Figure 6.8):

■■ The data grid in the center of the view displays the selected table and all columns and 
rows in it. You can highlight specific columns in the data grid to apply filters and quick 
transformations to the data.

■■ The Fields pane on the right side of the view allows you to choose which table is dis-
played in the data grid. You can also use the Fields pane to add new calculated measures 
or columns, rename data objects, and hide objects from the report view.

■■ The formula bar just above the data grid allows you to enter DAX formulas to create 
new measures and calculated columns. This is grayed out by default, but if you click 

F IGURE 6 .7   Power BI Desktop Model view

https://docs.microsoft.com/en-us/learn/paths/dax-power-bi
https://docs.microsoft.com/en-us/learn/paths/dax-power-bi


Power BI at a Glance  313

New Measure or New Column, the formula bar will become available for you to enter 
DAX code. Let’s take this time to create a new measure that calculates the most popular 
item sold by order quantity by clicking New Measure and adding the following DAX 
code to the formula bar:

        Most Popular Item Sold = TOPN(1, VALUES('Product'[Name]),
        CALCULATE(SUM('Sales Order Detail'[OrderQty])))

■■ At the top of the view there are two contextual ribbons, Table Tools and Column Tools, 
that contain common transformation activities like changing a column’s data type 
and format.

Once the data is modeled and cleansed to meet report specifications, navigate to the 
Report view to build an interactive report. This view allows report creators to do what they 
do best: build reports. The following steps can be used to create a report that displays the 
total order sales and total order quantity for every subcategory of road bikes that were sold.

1.	 Create a slicer for product names. There are two ways to start authoring visualizations 
with Power BI Desktop. Either you can drag a field from the Fields pane onto the canvas 
and choose the appropriate visual, or you can drag a visual from the Visualizations pane 
onto the canvas and drag data fields into the appropriate setting. For this filter, we are 
going to drag the Names field from the Product Category table onto the canvas and 
choose the Slicer visual. Select Road Bikes in the slicer to filter every visual on the page 
to only show data for road bikes.

2.	 Create a clustered column chart to display total order quantity for each product cate-
gory sold. Select the Clustered Column Chart visual to create a blank clustered column 
chart. Drag the Name field from the Product table to the Axis setting. Next, drag the 

F IGURE 6 .8   Power BI Desktop Data view



314  Chapter 6  ■  Reporting with Power BI

OrderQty field from the Sales Order Detail table to the Values setting. This will create a 
clustered column chart that displays the number of items sold for each product. Because 
the slicer is actively filtering the report by the road bike category, the column chart will 
display the order quantity data for each road bike subcategory. You can modify the 
visual’s format at any time by clicking the Format icon in the Visualizations pane and 
changing settings such as the bar colors, text font, title, and data labels.

3.	 Create three card visuals that display the total sales amount, total order quantity, and 
most popular item sold. Select the Card visual three times to create three blank cards on 
the canvas. Add the following to each card:

a.	 For the first card, drag the OrderQty field from the Sales Order Detail table to the 
Fields setting. Power BI will automatically aggregate the OrderQty field to display 
its sum based on any applied filters.

b.	 For the second card, drag the LineTotal field from the Sales Order Detail table 
to the Fields setting. Power BI will automatically aggregate the LineTotal field to 
display its sum based on any applied filters.

c.	 For the third card, drag the previously defined Most Popular Item measure from 
the Product table to the Fields setting. Power BI will use this measure to display the 
item with the highest OrderQty value based on any applied filters.

As an interactive report, the filtering capabilities extend further than just the slicer visual. 
By clicking any of the columns in the column chart, the page will filter so that the other 
visuals will focus on the specific product name that is associated with the clicked column. 
Also, if you hover your mouse over any of the columns you will see a tooltip that displays 
the product name and order quantity for that specific product. Figure 6.9 illustrates the fin-
ished report with the tooltip for the first column in the column chart.

F IGURE 6 .9   Power BI Desktop Report view on the Order Quantity Sold Per Item page



Power BI at a Glance  315

Visuals can be changed at any time by clicking on a visual and then 
selecting a different visual from the Visualizations pane. Power BI will 
attempt to rearrange the fields used in the old visual to the most appro-
priate settings in the new visual.

After you have finished building the report, you can save the file locally as a PBIX file. 
PBIX files (saved with the .pbix filename extension) can be opened at any time by Power 
BI Desktop so that report creators can modify the visuals, data model, and query definitions 
used to power the report. In addition to saving reports as PBIX files, you can save the report 
as a Power BI report template (PBIT) that other report creators can use as a starting point 
for a new report’s layout, data model, and query definitions. Unlike a PBIX file, PBIT  
files (saved with the .pbit filename extension) do not include the data used to power the 
report. More information about Power BI report templates can be found at https://docs 
.microsoft.com/en-us/power-bi/create-reports/desktop-templates.

Publishing and Sharing Interactive Reports with the Power BI Service

Now that the data model and report are ready to be shared with other users, let’s publish the 
report to the Power BI service. You can do this by clicking the Publish button in the Home 
ribbon and choosing a destination workspace for the report and data model. Remember that 
you will need to log into the service first before you can publish the report.

To maintain a connection with data sources that are not publicly acces-
sible from the Power BI service, such as an on-premises SQL Server data-
base or a cloud resource that is only accessible via a private IP address, 
you will need to install and configure an on-premises data gateway on a 
machine that is in the same network as the data source. More information 
on how to use and install the on-premises data gateway can be found at 
https://docs.microsoft.com/en-us/data-integration/gateway/
service-gateway-onprem.

Workspaces serve as containers in the Power BI service where users can logically orga-
nize content and collaborate with colleagues. A single workspace can host several datasets, 
reports, and dashboards that serve the reporting needs of specific business units or for 
specific solutions. Content creators with a Power BI Pro or Power BI Premium Per User 
license can share workspace content to different users and control their level of access by 
assigning them one of the following roles:

■■ Viewer—Users assigned this role will only be able to view and interact with reports and 
dashboards contained in the workspace.

■■ Contributor—Users assigned this role will be granted Viewer permissions and the ability 
to create, edit, and delete content. This includes publishing reports to the workspace, 
downloading a report, and scheduling data refreshes.

■■ Member—Users assigned this role will be granted Viewer and Contributor permissions 
as well as the ability to add other users to the workspace with Viewer or Contributor 
permissions.

https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-templates
https://docs.microsoft.com/en-us/power-bi/create-reports/desktop-templates
https://docs.microsoft.com/en-us/data-integration/gateway/service-gateway-onprem
https://docs.microsoft.com/en-us/data-integration/gateway/service-gateway-onprem


316  Chapter 6  ■  Reporting with Power BI

■■ Admin—Users assigned this role will have full control of the workspace, including the 
ability to update and delete the workspace.

More information about Power BI workspace roles can be found at https://docs 
.microsoft.com/en-US/power-bi/collaborate-share/service-roles-new-
workspaces#workspace-roles.

By default, every Power BI use has a personal workspace called My work-
space that content creators can use as a private sandbox for learning and 
testing.

The workspace features that are available to a user, such as the number of times they 
can schedule a data refresh or the maximum data model size that a workspace can manage, 
depends on the type of license the user has and the Power BI plan applied to the workspace. 
While licensing is not covered by the DP-900 exam, it is important to know that users can 
use a Power BI Pro or Power BI Premium Per User license to manage content and that work-
spaces can use shared capacity or premium (dedicated) capacity. The feature and price differ-
ences between license and plan types can be found at https://powerbi.microsoft.com/
en-us/pricing.

Workspace content is organized into different sections for dashboards, reports, and data-
sets as well as two other objects not discussed so far: workbooks and data flows. Power 
BI workbooks are Excel workbooks that are imported into a Power BI workspace. Once 
imported into a Power BI workspace, the workbook is converted to a dataset that can be 
used to serve new reports. Power BI dataflows offer similar data connection, ingestion, and 
transformation functionality as the Power BI Desktop Power Query Editor but are instead 
managed by the Power BI service.

You can navigate to the Power BI service by going to https://powerbi.com. Once 
you are signed in, you will be able to traverse the service by using the buttons in the left-side 
menu. This menu is divided into two sections, with the top one including buttons that will 
take the user to commonly browsed pages such as the Power BI service home page, recently 
viewed objects, Power BI apps, and deployment pipelines. The bottom section of the left-side 
menu allows users to navigate to the different workspaces that they have access to.

All of the content associated with a workspace is displayed in the center of the page when 
you select a workspace. The workspace home page also includes options that allow users to 
manage several administrative activities such as setting a dataset refresh schedule and grant-
ing user access. Figure 6.10 shows the home page of the “DP900-PBI-Workspace” workspace 
that contains the DP900PBI report and dataset.

If you click on the report name, Power BI will open it in the center of the page. This view, 
known as the “reading view,” allows users to interact with visuals and derive insights from 
the report. Users with the appropriate access can click the Edit button in the top bar to make 
modifications to the report directly in the Power BI service. Figure 6.11 shows the DP900PBI 
report in the DP900-PBI-Workspace.

As you can see in Figure 6.11, the top bar includes additional settings that allow you 
to monitor the usage of your report and share the report to internal and external business 

https://docs.microsoft.com/en-US/power-bi/collaborate-share/service-roles-new-workspaces#workspace-roles
https://docs.microsoft.com/en-US/power-bi/collaborate-share/service-roles-new-workspaces#workspace-roles
https://docs.microsoft.com/en-US/power-bi/collaborate-share/service-roles-new-workspaces#workspace-roles
https://powerbi.microsoft.com/en-us/pricing
https://powerbi.microsoft.com/en-us/pricing
https://powerbi.com


Power BI at a Glance  317

users. There are also options that allow users to export the report to a PDF or PowerPoint to 
serve business users who prefer to consume their reports through those mediums.

Reports, both interactive and paginated, are often too granular for business decision 
makers who need to monitor the performance of their business in real time. Many times, 
these decision makers are looking for a clear, summarized view that allows them to monitor 
their business and see the most important metrics without having to dig through a mountain 

F IGURE 6 .10   Power BI Service Workspace home page

F IGURE 6 .11   Power BI Service Report view



318  Chapter 6  ■  Reporting with Power BI

of reports. Content creators can provide this functionality in Power BI by building dash-
boards that highlight the most relevant visuals from one or more Power BI reports. The next 
section, “Dashboards,” examines Power BI dashboards in further detail.

Dashboards
Power BI dashboards are single page views that contain a collection of pinned visuals that 
are taken from reports and other data storytelling objects. It is important to remember that 
while reports tell a detailed story, dashboards only provide the highlights of that story.

You can think of a pinned visual, known as a tile, as a “headline” for the report it comes 
from. Tiles should summarize the information that a user needs to monitor their business 
while still being thought-provoking. If a user wants to examine a tile and its underlying 
information in more detail, or “read the full story,” they can click the tile and Power BI will 
navigate them to the report that the tile comes from.

Report visuals can be added to a dashboard by pinning them. To pin a visual, hover your 
mouse over a report visual and click the pin icon (see Figure 6.12). You will then be able to 
pin the visual to an existing or new dashboard.

While report visuals are commonly used to compose dashboards, there are other object 
types that can be pinned to a dashboard. Here is a full list of objects that that can be pinned:

■■ Report visuals—Pinned report visuals maintain the filters that were applied in the 
underlying report at the time the visual was pinned to the dashboard. Keep in mind that 
report visuals cannot be filtered once they are pinned to a dashboard, unless you open 
the tile in focus mode. Even then, the filter will be removed once you exit focus mode.

■■ Entire reports—In addition to being able to pin individual report elements to a dash-
board, Power BI allows you to pin an entire report page. When you pin an entire report 
page, the tile maintains the report’s interactivity capabilities. This means that you can 
interact with the tile as you would the report.

■■ Tiles from another dashboard—You can pin a tile from one dashboard to another. When 
clicked, the shared tile will still take you to the report that the tile comes from.

■■ Excel workbooks—You can pin a range of cells, an entire table, or a PivotTable from 
an Excel workbook to a dashboard. The workbook must be located in a OneDrive for 
Business account, and the account must be linked to a Power BI workspace. You can do 
this by clicking Get Data in the Power BI workspace, selecting Files, and then selecting 
OneDrive - Business. From here you will select the workbook file and choose Connect. 
More information about how to connect to and pin content from an Excel workbook 

F IGURE 6 .12   The pin icon on a report visual



Power BI at a Glance  319

can be found at https://docs.microsoft.com/en-us/power-bi/create-
reports/service-dashboard-pin-tile-from-excel#connect-your-excel-
workbook-from-onedrive-for-business-to-power-bi.

■■ Power BI Q&A—Q&A is a Power BI tool for exploring data with natural language, like 
“Top 10 product categories by order qty.” You can find this tool at the top of any dash-
board, with a prompt that states, “Ask a question about your data.” As of this writing, 
Power BI Q&A only supports questions asked in English, with support for Spanish 
in public preview. If Power BI can translate your question to the features and mea-
sures defined in your dataset, Q&A will render a visual that is tailored to answer your 
question. The generated visual can be pinned to the dashboard.

■■ Quick Insights—The Quick Insights feature in Power BI uses a set of advanced analyt-
ical algorithms developed by Microsoft Research to generate visualizations that high-
light specific features of a dataset. You can also run the Quick Insights feature on a 
dashboard tile to discover insightful information from a tile. Once the Quick Insights 
feature has finished running, you can choose to pin any of the generated visuals to a 
dashboard.

■■ Paginated reports—Power BI allows you to pin a paginated report that is hosted in the 
Power BI service, an on-premises Power BI Report Server, or SQL Server Reporting Ser-
vices (SSRS).

Along with pinned tiles, dashboard designers can incorporate the following five stand-
alone tile types into their dashboards:

■■ Web content—With this tile type, you can embed HTML code in a dashboard. This 
is useful if you would like to add content from social media sites or embed.ly to a 
dashboard.

■■ Image—This tile type adds an online image to a dashboard. Simply provide the image 
URL and the image will be displayed. Images stored on a site that requires security 
credentials, such as OneDrive or SharePoint, are not supported. Also, images that are 
stored in SVG format are not supported.

■■ Text box—This tile type allows you to add text to a dashboard.

■■ Video—This tile type allows you to add a YouTube or Vimeo video to a dashboard.

■■ Streaming data—This tile type allows you to add a real-time data stream, such as social 
media feeds or sensor data, to a dashboard. Power BI supports data streams that come 
from an API, Azure Stream Analytics, or PubNub.

You can add any of these stand-alone tile types by clicking the Edit button at the top of a 
dashboard and selecting + Add A Tile.

Figure 6.13 illustrates an example of a dashboard with tiles taken from the DP900PBI 
report. The top three tiles focus on the most popular item sold, the sales total, and the total 
number of items sold. Below those tiles is the column chart that breaks down the quantity 
sold for each product subcategory. As you can see, the dashboard tiles reflect the “Road 
Bikes” filter that was applied in the underlying report.

https://docs.microsoft.com/en-us/power-bi/create-reports/service-dashboard-pin-tile-from-excel#connect-your-excel-workbook-from-onedrive-for-business-to-power-bi
https://docs.microsoft.com/en-us/power-bi/create-reports/service-dashboard-pin-tile-from-excel#connect-your-excel-workbook-from-onedrive-for-business-to-power-bi
https://docs.microsoft.com/en-us/power-bi/create-reports/service-dashboard-pin-tile-from-excel#connect-your-excel-workbook-from-onedrive-for-business-to-power-bi
http://embed.ly


320  Chapter 6  ■  Reporting with Power BI

Above the dashboard tiles is the Power BI Q&A text box. If you enter a question like 
“top 10 product categories by order qty” into the text box, Q&A will generate a clustered 
bar chart with the Product Category Name field on the y-axis and the Sales Order Detail 
OrderQty field on the x-axis (see Figure 6.14). If you would like, you can click Pin Visual 
in the upper-right corner of the Q&A page to pin the visual to the dashboard. You can also 
change the question to get a new result. Click Exit Q&A to return to the dashboard.

Power BI dashboards can be created and managed only by the Power BI service. Dash-
board designers can define two distinct layouts for a dashboard: the web layout that is used 
by computers and tablets and the mobile layout that optimizes the dashboard layout for 
mobile devices. The mobile layout is used when a user is viewing a dashboard through the 
Power BI mobile app.

Paginated Reports
Paginated reports differ from interactive reports in that they are designed to display every 
row of data for a given data source and a set of parameters versus aggregating data. They 
are called paginated because they are formatted to fit cleanly on one or more pages, mak-
ing them easy to print. Just like an interactive report, paginated reports can be shared with 
business users through the Power BI service, as long as it has Premium capacity, or through 
an on-premises Power BI Report Server.

F IGURE 6 .13   Power BI dashboard



Power BI at a Glance  321

Paginated reports have been a staple of BI solutions for several years now. Prior to pagi-
nated reports being available in Power BI, organizations could host their paginated reports 
in SSRS. While organizations can still host their paginated reports in an SSRS instance, 
Power BI enables them to consolidate all of their reports in a single ecosystem.

Report creators can use Visual Studio or Power BI Report Builder to create paginated 
reports. Power BI Report Builder is a free desktop application that is dedicated for building 
Power BI paginated reports. As mentioned previously in this chapter, you can download 
a free copy of Power BI Report Builder at www.microsoft.com/en-us/download/
details.aspx?id=58158.

When you open Power BI Report Builder on your desktop, you will be presented with 
a pop-up window that provides several options for getting started (see Figure 6.15). Along 
with being able to open a blank or an existing report, the Getting Started pop-up window 
allows you to create a new report with one of the following wizards:

■■ The Table or Matrix Wizard will guide you through establishing a data source connec-
tion and designing the layout for a table or matrix report.

■■ The Chart Wizard will guide you through creating a column, line, pie, bar, or area chart.

■■ The Map Wizard will guide you through building a report that has a geographical 
background.

If you click the Blank Report option in the Getting Started pop-up window, you will be 
taken to a new report page where you can begin building your report. At the top of the page, 
there are several ribbons that allow you to establish a new data connection and build report 
visuals. On the left side of the page there are folders for items that can be incorporated into 
a report, including built-in fields, parameters, images, data sources, and datasets.

F IGURE 6 .14   Power BI Q&A output

https://www.microsoft.com/en-us/download/details.aspx?id=58158
https://www.microsoft.com/en-us/download/details.aspx?id=58158


322  Chapter 6  ■  Reporting with Power BI

Unlike interactive reports, datasets that are embedded in a paginated 
report are only accessible from within that report. If you upload a pag-
inated report to the Power BI service, its underlying dataset will not be 
displayed under Datasets in the workspace.

In the center of the page is the report canvas, with two prepopulated fields for the report 
title and the execution time (these can be removed if you do not need them). You can add 
a new data visualization to the report by navigating to the Insert ribbon at the top of the 
canvas, selecting a visual, and placing it anywhere on the canvas. Figure 6.16 illustrates a 
new report in Power BI Report Builder with a focus on the Insert ribbon:

You can establish a connection to a data source by selecting one of the options in the 
Data ribbon at the top of the canvas. As of this writing, paginated reports support the fol-
lowing data sources:

■■ Azure SQL Database

■■ Azure Synapse Analytics

■■ Azure Analysis Services

■■ Dataverse

F IGURE 6 .15   Power BI Report Builder Getting Started window



Power BI at a Glance  323

■■ SQL Server

■■ SQL Server Analysis Services

■■ Power BI datasets

■■ Oracle

■■ Teradata

■■ ODBC connections

After you have finished building the report, you can save the file locally as a Report Def-
inition Language (RDL) file. RDL files (saved with the .rdl file extension) can be opened 
at any time by Power BI Report Builder so that report creators can modify the report. You 
can publish the report to a Power BI workspace that is in a Power BI Premium capacity by 
clicking the Publish button in the Home ribbon and choosing a destination workspace for 
the report.

F IGURE 6 .16   A blank report in Power BI Report Builder



324  Chapter 6  ■  Reporting with Power BI

Summary
Power BI is an ecosystem of services that turn data into coherent and visually stimulating 
insights. BI practitioners and data analysts can build interactive reports from a combination 
of several data sources with Power BI Desktop and upload those reports to the Power BI ser-
vice where the reports can be shared with business users. Once a report is published to the 
Power BI service, users can create a mobile friendly version of the report that business users 
can view through the Power BI mobile app. Report creators can also create traditional, pag-
inated reports through Power BI Report Builder and host their content in their on-premises 
environment with the Power BI Report Server.

Regardless of the type of report a user is creating, most Power BI solutions follow the 
same conceptual workflow: ingest data, transform data to meet specific report requirements, 
build a data model, define business-oriented calculations, author reports, publish the reports, 
create dashboards, and share Power BI content to business users.

Of the two report types, interactive reports are far and away the most sophisticated 
and feature-rich. These reports are a collection of interactive data visualizations and fil-
ters that reveal insights from a dataset. Interactive reports are usually built with Power BI 
Desktop, where users can either import data from one or more data sources into a Power 
BI data model for fast performance or establish a direct connection to the data source with 
DirectQuery or a live connection to minimize the data model footprint. Users can apply data 
transformation activities to the data as it is being ingested with the Power Query Editor and 
create custom calculations with DAX formulas after the data model is defined.

Once the report is ready to be shared, users can publish the report to a workspace in the 
Power BI service. Content creators can share their reports and other workspace content to 
business users who need to view the reports and with additional content creators who will 
be adding content to the workspace. Along with reports and datasets, Power BI workspaces 
manage other data analysis objects such as workbooks, dataflows, and dashboards.

Content creators can highlight the most important aspects of their reports by pinning 
visuals as tiles to a Power BI dashboard. If a user wants to examine a tile and the report it 
comes from in more detail, then they can click on the tile and Power BI will navigate them 
to the report. Tiles can be created from several data storytelling objects, including report 
visuals, entire reports (interactive or paginated), Excel workbooks, visuals generated from 
Power BI Q&A or Power BI Quick Insights, or other dashboard tiles. Dashboards can also 
contain several stand-alone tile types that display web content, text, images, videos, or 
streaming data. Dashboard designers can use the Power BI service to define two distinct lay-
outs for a dashboard: a web layout that is optimal for computers and tablets and a mobile 
layout that can be used by the Power BI mobile app.

Paginated reports are designed to display tabular data and are formatted to fit cleanly 
on one or more pages. Just like an interactive report, paginated reports can be shared to 
business users through the Power BI service, as long as it has Premium capacity, or an on-
premises Power BI Report Server. Report creators can build paginated reports with Power BI 
Report Builder, a desktop tool that provides users with a dedicated environment for building 
Power BI paginated reports.



Exam Essentials  325

Exam Essentials
Describe the Power BI workflow.  Power BI solutions typically follow the same conceptual 
workflow: ingest data, transform data to meet specific report requirements, build a data 
model, define business-oriented calculations, author reports, publish the reports, create dash-
boards, and share Power BI content to business users. Remember that while the workflow is 
the same, building interactive and paginated reports requires different tools and uses differ-
ent design approaches.

Describe interactive reports.  Interactive reports, which are commonly created with Power 
BI Desktop, consist of interactive visuals and filters that can be used to reveal valuable 
business insights. Report creators can choose to import data from one or more data sources 
into a single Power BI data model for fast performance or establish a direct connection to 
the data source to minimize the data model footprint. Remember that you can apply data 
transformation steps as data is being ingested with the Power Query Editor and that you can 
create custom calculations with DAX formulas after the data model is defined. Once a report 
is created and is ready to be shared, you can publish the report and the underlying data 
model to the Power BI service. From here, you can grant business users access to view the 
report or grant content creators access to add and modify content.

Describe Power BI dashboards.  Power BI dashboards are single page views that contain a 
collection of pinned visuals that are taken from reports and other data storytelling objects. 
They highlight the most important features of a group of reports, giving users a high-level 
overview of the state of their business. Dashboards can consist of report visuals, entire 
interactive or paginated reports, Excel workbook objects, Power BI Q&A visuals, Power BI 
Quick Insights visuals, or tiles from another dashboard. Dashboards can also include stand-
alone tiles that display web content, text, images, videos, or streaming data. A dashboard tile 
cannot be filtered unless the tile is opened in focus mode or is a pinned report. Remember 
that Power BI dashboards can only be created through the Power BI service and that you can 
create a web layout and a mobile layout for a dashboard.

Describe paginated reports.  Paginated reports are formatted to fit cleanly on one or more 
pages, making them easy to print. Paginated reports can be published and shared through 
the Power BI Service only if it has Premium capacity. Otherwise, users can publish and share 
their paginated reports through an on-premises Power BI Report Server instance. Report 
creators can build paginated reports in Visual Studio or Power BI Report Builder. Power 
BI Report Builder is a desktop application that provides users a dedicated environment for 
building paginated reports and publishing paginated reports to a Power BI workspace that is 
in a Power BI Premium capacity or a Power BI Report Server instance.



326  Chapter 6  ■  Reporting with Power BI

Review Questions

1.	 Is the italicized portion of the following statement true, or does it need to be replaced with 
one of the other fragments that appear below? The Power BI service is a free Windows 
desktop application that is used to ingest data, build data models, and author interac-
tive reports.

A.	 Power BI Report Builder

B.	 Power BI Desktop

C.	 Power BI Report Server

D.	 No change needed

2.	 Which of the following services cannot be used to create a Power BI interactive report?

A.	 Power BI service

B.	 Power BI Desktop

C.	 Power BI Report Builder

D.	 All of the above

3.	 You are building reports with Power BI Desktop that will use data from a large data ware-
house hosted on an Azure Synapse Analytics dedicated SQL pool. You do not want to import 
all of the fact table data as the volume of data will be too large to upload to the Power BI 
service. On the other hand, the dimension tables you would like to connect to are small 
and static in nature. Which of the following options will provide the best performance for 
this dataset?

A.	 Use DirectQuery to create a live connection to the fact tables and import the smaller 
dimension tables.

B.	 Use the live connection connectivity type to connect to the fact tables and import the 
smaller dimension tables.

C.	 Use DirectQuery to create a live connection to the fact and dimension tables.

D.	 Use the live connection connectivity type to connect to the fact and dimension tables.

4.	 What is the minimum role required to allow a user to view existing reports and publish new 
ones to a Power BI workspace?

A.	 Viewer

B.	 Member

C.	 Contributor

D.	 Admin

5.	 Which of the following scenarios allows you to filter or slice an entire dashboard?

A.	 If an entire report page is pinned to a dashboard.

B.	 When a filter and a visual from the same report is pinned as separate tiles on a dash-
board.



Review Questions  327

C.	 When a dashboard tile is opened in focus mode you can filter the tile. The filter will be 
saved and applied to the other dashboard tiles when you exit focus mode.

D.	 All of the above.

6.	 Which of the following can be added as a stand-alone tile to a Power BI dashboard?

A.	 Text boxes

B.	 Streaming data

C.	 Web content

D.	 All of the above

7.	 Paginated reports can be published to a Power BI workspace if the workspace is in which of 
the following Power BI capacity types?

A.	 Shared

B.	 Premium

C.	 Pro

D.	 All of the above





Answers to the 
Review Questions

Appendix



330  Appendix  ■  Answers to the Review Questions

Chapter 1: Core Data Concepts
1.	 C.  Azure IoT Hub, Azure Event Hubs, and Apache Kafka are message brokers that can be 

used to ingest millions of events per second from one or more message producers. They can 
then queue messages before sending them to either a cold data store such as Azure Data Lake 
Store Gen2 or a stream processing engine such as Azure Stream Analytics. Azure SQL Data-
base is a relational database that is used to store structured data.

2.	 B.  Data manipulation language commands are used to manipulate data that is stored in a 
relational database. These commands include SELECT, INSERT, UPDATE, and DELETE.

3.	 A.  Azure Cosmos DB not only supports millisecond reads and writes to avoid lags, but its 
flexible schema makes for an easy platform to add a player’s membership information if they 
are a part of any gaming or social media communities.

4.	 D.  Azure Databricks Structured Streaming and Azure Stream Analytics can be used to create 
live and on-demand stream processing solutions. Both technologies can use data stored in 
Azure Blob Storage as reference data.

5.	 D.  All of these options are nonrelational data stores. While Azure Blob Storage is not a data-
base, it is still a nonrelational data store because of its ability to store nonrelational data such 
as binary, JSON, and Parquet files.

6.	 A.  Azure Cosmos DB’s Gremlin API is the best choice for storing relationships between dif-
ferent department entities. While this can be accomplished with a relational model, graph 
databases such as the Azure Cosmos DB’s Gremlin API are better options since they do not 
require applications to perform complex queries with several join operations.

7.	 B.  Azure Blob Storage is optimized for storing massive amounts of binary data such as 
images and can be accessed by several machine learning development platforms.

8.	 C.  The COPY statement provides the most flexibility for high-throughput data loading from 
external storage accounts into Azure Synapse Analytics.

9.	 B.  Azure Synapse Analytics dedicated SQL pool leverages scale-out architecture by distrib-
uting data and data processing to multiple nodes.

10.	 D.  Batch processing is the practice of transforming groups of data at scheduled 
periods of time.

11.	 A.  Azure Data Factory mapping data flows is a tool that allows data engineers to build data 
processing pipelines with a graphical user interface. Because there isn’t any code involved, 
this solution is the easiest to maintain and has the least amount of operational overhead.

12.	 C.  Diagnostic analytics answer questions about why things happened, and descriptive ana-
lytics answer questions about what has happened.

13.	 D.  Matrices are useful infographics for clearly displaying numerical totals and subtotals over 
different groups of categories.

14.	 A.  Analysts will need to be able to create and interact with reports as well as be able to pin 
the most relevant visualizations from those reports to dashboards for executives.



Chapter 2: Relational Databases in Azure  331

15.	 B.  Line charts are useful for displaying how data has changed over time.

16.	 A.  Cognitive analytics techniques can be used to build machine learning or deep learning 
models that power conversational bots. Each time they are queried, they become more accu-
rate as these models are designed to learn from each interaction with data.

Chapter 2: Relational Databases  
in Azure
1.	 B.  While transactions with Read Committed isolation prevent other transactions from 

reading dirty data, they do not stop other transactions from modifying or inserting data. This 
can result in nonrepeatable or phantom reads.

2.	 C.  The optimal method for storing data in an analytical system is to flatten data into a 
star schema. This allows business users to easily write queries that can read data without 
requiring complex joins.

3.	 A.  Creating a nonclustered index on the column or columns that are included in the filter 
criteria for commonly used queries will increase their performance.

4.	 D.  No change is needed as Azure SQL Managed Instance falls under the PaaS data-
base options.

5.	 A.  Azure SQL MI is ideal for lift-and-shift scenarios that require a quick migration time to 
Azure. SQL MI provides nearly 100 percent feature compatibility with SQL Server, all the 
while providing users with the benefits of a PaaS database.

6.	 B.  Memory optimized virtual machines offer stronger memory-to-CPU ratios that are ideal 
for SQL Server workloads.

7.	 B.  SQL Server Always On availability groups replicate specific user databases to other SQL 
Server instances for HADR purposes.

8.	 D.  Virtual networks, or VNets for short, are fundamental building blocks to building an iso-
lated network in Azure. Services such as SQL Server on Azure VM and Azure SQL MI can be 
added to VNets to limit application connectivity to applications that can connect to the VNet.

9.	 A.  A network security group, or NSG for short, controls access to the SQL Managed In-
stance data endpoint by filtering traffic on port 1433 and ports 11000–11999 when SQL 
Managed Instance is configured for redirect connections. The NSG is associated to the subnet 
hosting the Azure SQL MI once it is created.

10.	 B.  The Business Critical tier of Azure SQL MI automatically creates a SQL Server Always 
On availability group and multiple secondary nodes for HADR purposes. While these nodes 
are abstracted from the user, one of them is enabled to serve read-only workloads. This 
allows users to read data from the database without affecting the performance of the write 
operations.



332  Appendix  ■  Answers to the Review Questions

11.	 C.  The maximum number of user databases that can be deployed to a single Azure SQL 
MI is 100.

12.	 C.  Private Link is a service in Azure that allow users to attach a private endpoint to PaaS 
offerings such as Azure SQL Database. A private endpoint is a private IP address in a specific 
subnet in a VNet.

13.	 B.  Materialized views consist of aggregations performed on multiple tables, allowing analysts 
to use simple queries to build reports. Materialized views also compile and store aggregations 
as data is updated in the underlying tables, making them much faster than traditional views.

14.	 D.  To take advantage of Azure Synapse Analytics dedicated SQL pool’s scale-out design, data 
is sharded 60 distributions across one or more compute nodes.

15.	 B.  Azure SQL MI manages database backups by taking full, differential, and transaction 
log backups at scheduled time periods. Database backups can be restored to another Azure 
SQL MI by using a point-in-time restore to specify what version of the database should 
be restored.

16.	 A.  The vCore-based purchasing model for Azure SQL Database includes the following ser-
vice tiers: General Purpose, Business Critical, Hyperscale. This purchasing model gives users 
the ability to choose the number of vCores, the amount of memory, and storage speed.

17.	 B.  Azure Database for PostgreSQL is the only open-source PaaS database option that offers a 
Hyperscale deployment model for large OLTP workloads.

18.	 B.  Connect-AzAccount is required to establish a connection with an Azure environment 
before resources can be managed.

19.	 C.  Hash distribution is the best option for large fact tables and provides the best 
performance for joins and aggregations. This type of distribution distributes data by running 
a hash function on a column in a table that will deterministically assign each row of a table 
to a distribution.

20.	 D.  Microsoft.Sql/servers manages the deployment configuration of a logical servers, while 
Microsoft.Sql/servers/databases manages the deployment configuration for each database 
associated with a logical server.

21.	 A.  New-AzSqlDatabase is the Azure PowerShell command used to create a new Azure 
SQL Database.

22.	 B.  The SQL DB Contributor role gives a user the ability to create and manage databases in 
Azure. While the Contributor role also allows the user to perform the same task, it grants 
more privileges than what are needed.

23.	 C.  Always Encrypted is a feature in SQL Server and Azure SQL that encrypts sensitive table 
columns. It allows the client application to manage the encryption and decryption keys, 
ensuring that only the client app can decrypt the sensitive data.

24.	 D.  SQL Server Management Studio (SSMS) provides tools for configuring, monitoring, and 
administering instances of SQL Server and Azure SQL.



Chapter 3: Nonrelational Databases in Azure  333

25.	 A.  Database contained users only have access to the databases they are hosted in. Change the 
database context in the SSMS Connect To Server screen from default to the database the user 
is contained in to successfully establish the connection.

26.	 B.  CREATE TABLE statements fall under the Data Definition Language, or DDL, category of 
SQL statements.

27.	 D.  Advanced Threat Protection is a component of the Azure Defender for SQL service that enables 
organizations to detect and respond to potentially malicious attempts to access a database.

28.	 B.  CREATE USER [<AAD_User>] FROM EXTERNAL PROVIDER; is the T-SQL statement 
that can be used to add an AAD user or group as a user in an Azure SQL Database.

29.	 A.  FROM is the first logical step processed by the database engine.

30.	 B.  NVARCHAR() is a Unicode data type that is used to define string data that has var-
iable size.

31.	 A.  Inner joins are used to retrieve data from both tables that meets the join condition.

Chapter 3: Nonrelational 
Databases in Azure
1.	 D.  Azure Table storage, Azure Cosmos DB Table API, and Azure Cache for Redis are key-

value stores that can be deployed in Azure. 

2.	 A.  Key-value stores can only be queried by the keys, not the values. Document databases can 
be queried by both the keys and fields of data stored in a document.

3.	 C.  Containers are the fundamental resources of scalability for throughput and storage in 
Azure Cosmos DB. It is at this level that data is grouped into partitions and replicated.

4.	 A.  The session consistency level is the default consistency for Azure Cosmos DB. It grants a 
session token to the application writing data and guarantees that it and any other application 
sharing the same session token sees the most recent version of data.

5.	 C.  While Azure Table storage and Azure Cosmos DB Table API are both Azure-based key-
value stores, only the Azure Cosmos DB Table API can enable multiple write regions.

6.	 D.  The Azure Cosmos DB API for MongoDB is one of two document database APIs offered 
in Azure Cosmos DB. The API for MongoDB allows users to migrate existing MongoDB doc-
ument databases to Azure and take advantage of the premium capabilities provided by Azure 
Cosmos DB.

7.	 A.  The first 1000 RU/s and 25 GB of storage are free when the free tier discount is applied 
to an Azure Cosmos DB account. Remember, the free tier discount can only be applied to one 
Azure Cosmos DB account per Azure subscription.



334  Appendix  ■  Answers to the Review Questions

8.	 C.  Infrastructure as Code files such as ARM templates maintain the infrastructure settings 
required by development environments. They can be used to quickly provision new Azure 
Cosmos DB instances across multiple environments, ensuring that each environment is built 
using consistent standards. 

9.	 C.  Cosmos DB Built-in Data Reader is the built-in RBAC role that gives Azure Active 
Directory identities read access to Azure Cosmos DB data. This role grants the ability to read 
account metadata, data from specific items (point-reads and queries), and a specific contain-
er’s change feed. It does not grant permissions to create and delete data. 

10.	 A.  Azure Cosmos DB Explorer is a stand-alone web application that can be used to view and 
manage data stored in Azure Cosmos DB. Developers can connect to an Azure Cosmos DB 
account using the Azure Cosmos DB Explorer with one of the read-write keys or one of the 
read-only keys. This allows administrators to restrict developer access to read-only by giving 
them one of the read-only keys to connect with.

Chapter 4: File, Object, and Data 
Lake Storage
1.	 D.  Azure Storage accounts are used to store data of all types in multiple file formats. This 

includes binary data such as videos and images as well as text formats such as CSV, JSON, 
XML, and Parquet.

2.	 B.  Geo-redundant and geo-zone-redundant storage is only available for standard general-
purpose v2 storage accounts.

3.	 A.  Azure Files is a fully managed file share service in Azure that can be used to replace or 
complement existing on-premises file shares. To create the most performant connection bet-
ween an Azure file share and an on-premises environment, set up Azure File Sync on a Win-
dows Server machine to create a local cache for frequently accessed items. Azure File Sync is 
currently only available for Windows Server 2012 R2 and higher.

4.	 A.  SMB uses port 445 for communication and will need to be opened if there is not an 
established Azure VPN or ExpressRoute to tunnel SMB traffic.

5.	 C.  Page blobs are optimized for random read and write operations, making them ideal for 
storing data disks for VMs and databases.

6.	 B.  The most cost-effective option for this solution would be to initially store the raw data 
using the hot access tier and then transition the raw data to the archive access tier once it is 
processed. The hot access tier for blob data is optimized for storing data that is frequently 
read from or written to. The archive access tier is for blob data that is rarely accessed, often 
being used for data that is only saved for regulatory purposes. 

7.	 A.  The hierarchical namespace is the fundamental component of ADLS and organizes 
object data as files in a hierarchy of directories and subdirectories for efficient data access. 



Chapter 5: Modern Data Warehouses in Azure  335

This feature also allows users to enable more fine-grained access control on directories or 
individual files using POSIX permissions. 

8.	 B.  The Get-AzStorageAccount command gets the information for a specified  
storage account or all the storage accounts in a resource group or subscription. While the 
Get-AzureRmStorageAccount module will also perform the same function, the  
AzureRM PowerShell modules are being deprecated in favor of the Az PowerShell modules. 
AzureRM PowerShell modules will be officially retired in February 2024.

9.	 C.  Using a private endpoint restricts access to only applications that can communicate with 
the VNet that the private IP address is in. This is the Microsoft recommended solution for 
securing personally identifiable information.

10.	 D.  The Storage Blob Data Reader role grants read access to blob containers and data to iden-
tities that it is assigned to. 

11.	 B.  Azure Data Box is a physical device that lets organizations send large amounts of data to 
Azure very quickly. Microsoft will ship the device to organizations. Once it’s received, orga-
nizations can upload their data over a wired connection to the device and return the device 
to the Azure datacenter they would like their storage account to be located in. Microsoft 
will upload the data from Azure Data Box to the desired storage account once the device is 
received at the Azure datacenter. 

12.	 D.  Azure Storage Explorer can connect at several different levels, including Azure subscrip-
tions, storage accounts, and storage services. 

Chapter 5: Modern Data 
Warehouses in Azure
1.	 B.  Third normal form, or 3NF for short, is a database table modeling approach that is 

optimal for transactional workloads. It ensures that data is not redundantly stored and 
reduces the chances of concurrency issues as transactions are written to the database. 

2.	 D.  Data warehouses, OLAP models, and enterprise data lakes are all valid data stores for 
analytical workloads. While most analytical workloads result in clean data being loaded 
into a data warehouse or OLAP model, data scientists typically use data stored as files in an 
enterprise data lake to build predictive and prescriptive analysis. 

3.	 A.  Delta Lake is an open-source storage layer that brings ACID properties to data stored in 
ADLS. It is optimized for big data workloads and interactive query engines such as Apache 
Spark and Azure Synapse Analytics serverless SQL pools.

4.	 B.  Azure Stream Analytics is a real-time analytics engine that is designed to process stream-
ing data. It is not used for batch processing, but it can be used to store data in a persistent 
data store like ADLS and Azure Synapse Analytics dedicated SQL pools.



336  Appendix  ■  Answers to the Review Questions

5.	 C.  Along with dimension tables, fact tables are core components of the star schema. Fact ta-
bles store measurable observations or events such as sales metrics.

6.	 C.  Apache Kafka is a popular open-source framework for large-scale stream processing 
workflows. It provides message broker functionality that can be used to ingest large volumes 
of streaming data. 

7.	 A.  With Spark Structured Streaming, Azure Databricks can read data in real time from data 
sources like Azure Event Hubs and Apache Kafka for stream processing workflows.

8.	 C.  The cost of running an Azure Databricks cluster can be calculated by adding the Azure 
VM and DBU cost.

9.	 B.  VNet injection allows you to deploy Azure Databricks data plane resources such as clusters 
in your own VNet. This makes it easy to connect to Azure resources that have been assigned 
private endpoints. Since VNet injection uses a public and a private subnet by default, enable 
secure cluster connectivity to change the configuration so that it uses two private subnets.

10.	 D.  Azure Databricks supports GitHub, Bitbucket, GitLab, and Azure DevOps integration.

11.	 B.  The High Concurrency cluster mode supports concurrent workloads for users performing 
interactive analysis.

12.	 A.  Azure Synapse workspaces are automatically deployed with a serverless SQL pool endpoint 
that can be used to interactively query data in Azure Storage. Serverless SQL pools cannot be 
deleted, and additional serverless SQL pools are not supported by a single workspace.

13.	 A.  Azure Synapse Link is a hybrid transactional and analytical processing (HTAP) service 
that enables users to run near real-time analytical queries over transactional data. Data is 
synchronized with an analytical data store that can be explored with an Azure Synapse Ana-
lytics serverless SQL pool or an Azure Synapse Analytics Apache Spark pool.

14.	 C.  There is only one serverless SQL pool allowed per workspace and it is immediately avail-
able once the workspace is deployed.

15.	 A.  Result set caching improves query performance by automatically caching query results in 
a dedicated SQL pool user database for later use. This allows subsequent runs of the query to 
get results directly from the cache instead of recomputing the results.

16.	 D.  Serverless SQL pools can be used for a variety of analytical workloads, including ad-hoc 
analysis, building a logical data warehouse, and streamlining data transformations.

17.	 B.  The OPENROWSET function allows you to access files stored in Azure Storage. It reads 
the content of data and returns the content as rows.

18.	 A.  Dedicated SQL pools use a massively parallel processing (MPP) architecture to optimally 
manage large datasets. With features such as clustered columnstore indexes (CCIs), material-
ized views, and result set caching, users can quickly gather insights from running analytical 
queries over large amounts of historical data.

19.	 B.  Control activities, such as foreach, filter, if, switch, and until activities, control the flow of 
an ADF pipeline. 



Chapter 6: Reporting with Power BI  337

20.	 D.  When defining an Azure SQL Database dataset as the source dataset for an ADF copy 
activity, you can choose to copy an entire table or use the result set of a query or stored 
procedure.

21.	 B.  Data engineers are able to execute existing SSIS packages with the Azure-SSIS integration 
runtime and the Execute SSIS Package activity in Azure Data Factory. Packages can be 
deployed to an SSIS catalog (SSISDB) on an Azure SQL Database and then run as a part of 
an ADF pipeline.

22.	 A.  ADF triggers can be one of four types: scheduled, a tumbling window, a storage event 
such as a blob being uploaded to Azure Blob storage, or a custom event that handles custom 
topics in Azure Event Grid. 

23.	 D.  The FIELD_TERMINATOR argument specifies one or more characters that mark the end 
of each field in a delimited text file. Because the data in this use case is formatted as CSV 
(comma separated values), the field terminator should be set to a comma (',').

24.	 C.  The COPY statement provides the best performance and most flexibility for parallel 
data ingestion into an Azure Synapse Analytics dedicated SQL pool table. The COPY state-
ment requires developers to write and run a single T-SQL statement, unlike PolyBase, which 
requires users to create additional database objects.

Chapter 6: Reporting with Power BI
1.	 B.  The Power BI Desktop tool is a free Windows desktop application that is used to ingest 

data, build data models, and author interactive reports.

2.	 C.  Power BI Report Builder can be used to create paginated reports, but not interactive 
reports. While Power BI Desktop is the preferred tool for creating interactive reports, report 
creators can quickly author interactive reports through the Power BI service.

3.	 A.  Using DirectQuery to connect to the fact tables will alleviate any issues related to importing 
data into the Power BI data model. Importing the smaller, static dimension tables will ensure 
that visualizations and filters using that data will respond quickly to any user interactions.

4.	 C.  Users assigned the Contributor Power BI workspace role are able to view and modify 
existing workspace content, such as reports and dashboards. They are also able to publish 
new content to the workspace.

5.	 A.  A dashboard can only be filtered if you pin an entire report page to the dashboard. While 
you can filter an individual dashboard tile when it is in focus mode, the filter will not be 
saved when you exit focus mode.

6.	 D.  Along with tiles that come from Power BI reports, Power BI dashboards can incorporate 
stand-alone tiles that display web content, images, video, text boxes, and streaming data.

7.	 B.  Paginated reports can only be uploaded to a Power BI workspace that is in a Power BI 
Premium capacity.





Index

A
AAD (Azure AD), 108–109, 206–207
ABFS (Azure Blob File System), 197
access control lists (ACLs), 208–210
access keys, 204
access management

about, 107–110
Azure Cosmos DB and, 165–167
Azure Storage security and, 204–210

access tiers
for Azure Blob Storage, 192–193
for Azure Files, 187–188

accessing Azure Storage, 249–251
ACLs (access control lists), 208–210
Active Directory (AD) 

authentication, 108–109
activities, 252
AD Domain Services (AD DS),  

207–208
ADF (Azure Data Factory)

about, 14, 215–216, 251–254
creating pipelines with Copy Data 

Activity, 259–267
deploying instances, 254–256
navigating, 256–258
navigating Azure Data Factory 

Studio, 256–258
ADLS (Azure Data Lake Storage Gen2), 

9, 18–19, 20, 179, 180, 197–198, 
208–210, 235

Admin role (Power BI service), 316
administration options, for Azure SQL, 63
Advanced Threat protection, 112

AdventureWorksDW2019 sample 
database, 36

AGs (availability groups), 69
all-purpose clusters, 241
ALTER command, 120
Always Encrypted option, 111
analysis, reporting and, 230, 232
analytical data store, 230, 231
analytical systems, 5–6
analytical tools, 35
analytical workloads, 227–229
Analytics Maturity Model, 32–34
Apache Hadoop, 235–236
Apache HBase, 236
Apache Hive, 236
Apache Interactive Query, 236
Apache Kafka, 236
Apache Spark, 231, 236, 238–240
Apache Spark pools, 31, 269
Apache Storm, 236
apiProfile, in ARM templates, 101
append blobs, 192
application programming interfaces (APIs) 

(Azure Cosmos DB), 150–153
Archive tier, for Azure Blob Storage, 193
atomicity, as a property of transactional 

processing systems, 4
auditing, 112
authentication, 108–109
Author button (Azure Data Factory 

Studio), 257
authorization, 109–110
Automated Backup, 69
automation



340  autoscale throughput  –  Azure Resource Manager (ARMs) templates

for deployment, 96–105
as a management task for Azure 

Storage, 198–201
autoscale throughput, 149
availability groups (AGs), 69
AzCopy, 213–214
Azure AD (AAD), 108–109, 206–207
Azure Blob File System (ABFS), 197
Azure Blob Storage, 9, 18, 179, 

180, 191–197
Azure Cache for Redis, 141
Azure category (Power BI Desktop),  

306
Azure Cloud Shell, 97–99
Azure Command-Line Interface 

(Azure CLI)
about, 100–101, 200–201
as a deployment option for Azure 

Cosmos DB, 163–164
Azure Cosmos API for MongoDB,  

143
Azure Cosmos DB

about, 19, 145–146
API for MongoDB, 153
Cassandra API, 144, 153
Core (SQL) API, 143, 152
Explorer, 169–170
Gremlin API, 153
high availability, 146–148
Table API, 141, 150–151

Azure Data Box, 216–217
Azure Data Explorer, 268
Azure Data Factory (ADF)

about, 14, 215–216, 251–254
creating pipelines with Copy Data 

Activity, 259–267
deploying instances, 254–256
navigating, 256–258
navigating Azure Data Factory 

Studio, 256–258

Azure Data Lake Storage Gen2 (ADLS), 
9, 18–19, 20, 179, 180, 197–198, 
208–210, 235

Azure Data Studio, 117–118
Azure Database Migration Service 

(DMS), 106
Azure Databricks

about, 29, 30–31, 238–241
access Azure Storage, 249–251
cost structure, 241–242
creating notebooks, 249–251
creating Spark clusters with, 247–249
deploying workspaces, 242–245
navigating workspace UI, 245–247

Azure Defender for SQL, 112
Azure Event Hubs, 18
Azure File Sync, 187, 190–191
Azure Files, 9, 179, 180, 187–191,  

207–208
Azure HDInsight, 30, 235–238
Azure integration runtimes, 253
Azure IoT Hub, 18
Azure Portal

deploying through, 70–74, 78–79, 
84–88, 93–95, 182–186

as a deployment option for Azure 
Cosmos DB, 154–161

scaling PaaS Azure SQL in, 88
Azure PowerShell

about, 97–99, 199–200
as a deployment option for Azure 

Cosmos DB, 162–163
Azure Queue storage, 179, 180
Azure Reserved Virtual Machine 

Instances, 68
Azure Resource Manager 

(ARMs) templates
about, 101–105, 201
as a deployment option for Azure 

Cosmos DB, 164–165



Azure services  –  business continuity  341

Azure services, for modern data 
warehouses

about, 234–235
Azure Data Factory, 251–267
Azure Databricks, 238–251
Azure HDInsight, 235–238
real-time Azure data processing 

services, 267–268
Azure SQL

about, 63–65
Azure SQL Database, 80–88
Azure SQL Managed Instance (Azure 

SQL MI), 74–79
Azure Synapse Analytics dedicated SQL 

pools, 90–92
databases for MySQL, 93–96
disaster recovery for, 90
migrating to, 105–106
open-source databases in, 92–96
querying relational data in, 125–128
scaling PaaS Azure SQL in Azure 

Portal, 88
SQL Server on Azure Virtual 

Machine, 65–74
Azure SQL Database, 19
Azure SQL Server, on Azure Virtual 

Machine (Azure VM), 65–74
Azure Storage

about, 179–180
accessing, 249–251
data redundancy, 181–182
deploying through Azure 

Portal, 182–186
performance tiers, 180
services

Azure Blob Storage, 191–197
Azure Data Lake Storage 

Gen2, 197–198
Azure Files, 187–191

Azure Storage Explorer, 214–215

Azure Stream Analytics, 267–268
Azure Synapse Analytics

about, 31, 238
end-to-end analytics with

about, 268–270
dedicated SQL pools, 

90–92, 275–287
deploying workspaces, 270–271
navigating UI, 271–275
serverless SQL pools, 287–291

Azure Table storage, 141, 179, 180
Azure Virtual Machine (Azure VM), Azure 

SQL Server on, 65–74
Azure-SSIS integration runtimes, 253

B
bar charts, 37
Basic service tier

about, 92
of Azure SQL Database, 89

batch processing
about, 14–17, 19–20, 229–230
modern data solutions with, 232–233

BIT data type, 121
Blob service REST API, 195
blob versioning, 211
BlobClient, 196
BlobContainerClient, 196
BlobServiceClient, 196
block blobs, 192
bounded staleness consistency level,  

147
Boyce, Jim (author), Microsoft Certified 

Azure Fundamental Exam Guide, 62
bronze layer, in data transformation, 24
business continuity

for PaaS Azure SQL, 89–90
solutions for, 69–70



342  Business Critical service tier  –  core data

Business Critical service tier
in Azure SQL Database, 82, 89
Azure SQL Managed Instance (Azure 

SQL MI), 76

C
cDWUs (compute Data Warehouse 

Units), 91
CHAR data type, 121
Chart Wizard (Power BI), 321
CHECK command, 122
client library (Azure Blob 

Storage), 195–197
cloud-based hosting, 61–62
cluster manager, 238
clustered columnstore indexes 

(CCIs), 277–278
clustered indexes, 60
Clusters button (Azure Databricks),  

247
cognitive analytics, 34
cold path, 20, 232–233
column charts, 37
columnar databases, 8, 143–144
columnstore indexes, 60
composite models, 307–308
compute Data Warehouse Units 

(cDWUs), 91
compute resources, 253
Configure SSIS button (Azure Data Factory 

Studio), 257
configuring

consistency, 161
containers, 157–160
databases, 157–160
global distribution, 160–161

connectivity issues
Azure Storage, 212–213

common, 113–115
common for Azure Cosmos 

DB, 167–169
consistency

Azure Cosmos DB and, 147–148
configuring, 161
as a property of transactional processing 

systems, 4
consistent prefix consistency level,  

148
containers, configuring, 157–160
contentVersion, in ARM templates, 101
Contributor role (Power BI service), 315
control activities, 252
control flows, 26–29
control plane, 241
Cool access tier

for Azure Blob Storage, 192
for Azure Files, 187

Copy Data Activity, creating ADF pipelines 
with, 259–267

COPY statement, 285–287
core data

about, 40–41
analytics concepts

about, 21
data processing techniques, 21–32
describing, 32–34
describing data visualization 

techniques, 34–40
exam essentials, 41–43
review question answers, 330–331
review questions, 44–47
workloads

about, 2
data value, 3–9
data variety, 11–14
data velocity, 14–20
data volume, 10–11



Cosmos Backup Operator role  –  data types  343

Cosmos Backup Operator role, 166
Cosmos DB Account Reader role, 166
Cosmos DB Built-in Data 

Contributor role, 166
Cosmos DB Built-in Data Reader role, 166
Cosmos DB Operator role, 166
CosmosRestoreOperator role, 166
cost

Azure Databricks, 241–242
options for Azure SQL, 63

Create button (Azure Databricks), 245
CREATE command, 120
CREATE EXTERNAL TABLE 

command, 283–284
creating

ADF pipelines with Copy Data 
Activity, 259–267

blob containers, 193–194
file shares, 188–189
interactive reports with Power BI 

Desktop, 304–315
notebooks, 249–251
Spark clusters with Azure 

Databricks, 247–249
cross joins, 126
CTAS statement, 285

D
dashboards

Power BI, 318–320
tools for, 35

Data Analysis Expression (DAX), 312
data analytics, 21
Data button

Azure Databricks, 246–247
Synapse Studio, 273, 274

Data Control Language (DCL), 3

Data Definition Language (DDL), 
3, 120–123

data encryption
about, 110–112
Azure Cosmos DB and, 167
Azure Storage security and, 211

Data Explorer, 169, 269
Data Explorer pools, 269
data flows, 26–29
data grid (Power BI), 312
data lake storage. See file, object, and data 

lake storage
data loading methods, for dedicated SQL 

pools, 281–287
Data Manipulation Language (DML),  

3, 120, 123–124
Data Migration Assistant (DMA), 106
data modeling, for data 

warehouses, 233–234
data movement activities, 252
data plane, 241
data processing techniques

about, 21–22, 229
batch processing, 229–230, 232–233
data visualization techniques, 34–40
extract

load, and transform (ELT), 29–32
transform, and load (ETL), 22–29

modern data solutions with batch  
and stream processing, 232–233

real-time, 267–268
stream processing, 231–233
types, 32–34

data protection, Azure Storage 
security and, 211

data redundancy, 181–182
data store, 252
data transformation activities, 252
data types, 121



344  data value  –  disaster recovery

data value
about, 3
nonrelational data stores, 6–9
relational databases, 3–6

data variety, 11–14
data velocity, 14–20
Data view (Power BI Desktop), 

305, 312–313
data virtualization, 29
data visualization, 34–40
data volume, 10–11
data warehouses

about, 5, 292
analytical workload features

about, 226
data processing techniques,  

229–233
transactional vs. analytical 

workloads, 226–229
end-to-end analytics with Azure 

Synapse Analytics
about, 268–270
dedicated SQL pools, 275–287
deploying workspaces, 270–271
navigating Synapse Studio 

UI, 271–275
serverless SQL pools, 287–291

exam essentials, 293–294
modern components

about, 233
Azure services, 234–268
data modeling, 233–234

review question answers, 335–337
review questions, 295–300

Database category (Power BI 
Desktop), 306

database contained users, 114
Database Encryption Key (DEK), 110
databases

backups for, 89

configuring, 157–160
security of, 106–112

Databricks File System (DBFS), 240
Databricks Units (DBUs), 242
DataFrame API, 239–240
datasets, 253
DATE data type, 121
DATETIME data type, 121
DAX (Data Analysis Expression), 312
DBFS (Databricks File System), 240
DBUs (Databricks Units), 242
DCL (Data Control Language), 3
DDL (Data Definition Language), 

3, 120–123
DECIMAL data type, 121
dedicated SQL pools, 31, 269, 275–287
DEFAULT command, 122
DEK (Database Encryption Key), 110
DELETE command, 124
Delta Lake, 228, 241
deploying

ADF instances, 254–256
Azure Cosmos DB, 154–165
Azure Databricks workspaces, 242–245
Azure Synapse Analytics 

workspaces, 270–271
dedicated SQL pools, 279–281
scripting and automation for, 96–105
through Azure Portal, 70–74, 78–79, 

84–88, 93–95, 182–186
deployment scripting, as a management 

task for Azure Storage, 198–201
descriptive analytics, 33
Develop button (Synapse Studio), 273, 274
diagnostic analytics, 33
dimension tables, 56
DirectQuery connectivity (Power 

BI), 306–307
dirty reads, 52
disaster recovery, for Azure SQL, 90



distributions  –  forbidden exceptions  345

distributions, 58
DMA (Data Migration Assistant), 106
DML (Data Manipulation Language), 3, 

120, 123–124
DMS (Azure Database Migration 

Service), 106
document databases, 7, 142–143
DocumentDB Account 

Contributor role, 166
DROP command, 120
DTU-based purchasing model, 80
durability, as a property of transactional 

processing systems, 4
dynamic data masking, 111–112

E
elastic pool, 80
end-to-end analytics, with Azure 

Synapse Analytics
about, 268–270
dedicated SQL pools, 275–287
deploying workspaces, 270–271
navigating UI, 271–275
serverless SQL pools, 287–291

Enterprise Security Package (ESP), 237
entities, 150
entity relationship diagram (ERD),  

54–55
eventual consistency level, 148
exam essentials

core data, 41–43
data warehouses, 293–294
file, object, and data lake 

storage, 218–220
nonrelational databases, 171–173
Power BI, 325
relational databases, 130–131

Excel workbooks, pinning in Power 
BI, 318–319

execution plan, 117
external compute services, ADF and, 24
external tables, 282
extra_config parameter, 250
extract

load, and transform (ELT), 
16–17, 29–32

transform, and load (ETL), 
16–17, 22–29

extract phase, in extract
load, and transform (ELT), 30
transform, and load (ETL), 23

F
fact tables, 56
feature parity options, for Azure 

SQL, 63–64
Fields pane (Power BI), 312
file

object, and data lake storage
about, 178, 217–218
exam essentials, 218–220
features of, 178–179
review question answers,  

334–335
review questions, 221–223
Azure storage

about, 179–180
data redundancy, 181–182
deploying through Azure 

Portal, 182–186
management tasks, 198–217
performance tiers, 180
services, 187–198

File category (Power BI Desktop), 306
firewall-related issues, 113–114
first normal form (1NF), 53
Flexible Server deployment, 92
FLOAT data type, 121
forbidden exceptions



346  foreign key  –  key-based access control

as common connectivity issue for Azure 
Cosmos DB, 168–169

as common connectivity issue for Azure 
Storage, 212

foreign key, 58
FOREIGN KEY command, 122
formula bar (Power BI), 312–313
functions

in ARM templates, 102
as relational data structures, 61

G
General Purpose service tier

about, 92
in Azure SQL Database, 82, 89
in Azure SQL Managed Instance  

(Azure SQL MI), 76
general purpose VMs, 68
geo-redundant storage (GRS), 69, 181
geo-zone-redundant storage (GZRS), 181
global distribution

about, 146–147
configuring, 160–161

gold layer, in data transformation, 24
graph databases, 8, 144–145

H
Hadoop Distributed File System (HDFS), 

30, 197, 235–236
hash distributions, 90, 277
HBase in Azure HDInsight, 144
hierarchical namespace, 9, 197
high availability, Azure Cosmos DB 

and, 146–148
High Concurrency mode (Azure 

Databricks), 247
hot path, 20, 232–233
Hot tier

for Azure Blob Storage, 192
for Azure Files, 187

Hyperscale service tier, in Azure SQL 
Database, 82, 89

I
images, as a tile type in Power BI 

dashboards, 319
immutability policies, 211
Import connectivity (Power BI), 306
indexes, as relational data structures, 60
INDEXES command, 122
Infrastructure as a Service (IaaS), 62
Infrastructure as Code, 70
Ingest button (Azure Data Factory 

Studio), 256
INSERT command, 123
INSERT INTO SELECT statement, 285
instance-related issues, 113
instances (ADF), 254–256
instance-scoped features, 74
INT data type, 121
Integrate button (Synapse Studio), 273,  

275
integration runtimes, 253
interactive reports (Power BI), 304
isolation, as a property of transactional 

processing systems, 4

J
job clusters, 241
Jobs button (Azure Databricks), 247

K
key performance indicators (KPIs), 33
key-based access control, for Azure 

Cosmos DB, 166



key-value stores  –  mount_point parameter  347

key-value stores
about, 6–7
as feature of nonrelational 

databases, 141

L
Lambda architecture, 19–20, 232–233
line charts, 38
linked services, 252–253
Live connections (Power BI), 307
load phase, in extract

load, and transform (ELT), 30–32
transform, and load (ETL), 25–26

locally redundant storage (LRS), 69, 181
log in failure, 114
logical processing order, 124

M
Manage button

Azure Data Factory Studio, 258
Synapse Studio, 274–275

management
access

about, 107–110
Azure Cosmos DB and, 165–167
Azure Storage security and, 204–210

tasks for Azure Cosmos DB, 154–170
tasks for Azure Storage

about, 198
common connectivity 

issues, 212–213
deployment scripting and 

automation, 198–201
management tools, 213–217
security, 201–211

tasks for relational databases
about, 96
common connectivity 

issues, 113–115

database security, 106–112
deployment scripting and 

automation, 96–105
management tools, 115–119
migrating to Azure SQL, 105–106

tools
about, 115–119
for Azure Cosmos DB, 169–170
for Azure Storage

AzCopy, 213–214
Azure Data Box, 216–217
Azure Data Factory, 215–216
Azure Storage Explorer, 214–215

Map Wizard (Power BI), 321
mapping data flows, ADF and, 24–25
maps, 40
MariaDB

Azure databases for, 95
querying, 128

massively parallel processing (MPP) 
systems, 10, 32

materialized views, 59, 90, 278
matrix, 36–37
Member role (Power BI service), 315
Memory Optimized service tier, 92
memory-optimized VMs, 67
MERGE statement, 285
message producer, 17
Microsoft Certified Azure Fundamental 

Exam Guide (Boyce), 62
Microsoft Power BI. See Power BI
migrating

to Azure SQL, 105–106
timeline options for Azure SQL, 63

MLflow, 241
Model view (Power BI Desktop), 305
MongoDB, Azure Cosmos DB API for, 153
Monitor button

Azure Data Factory Studio, 257–258
Synapse Studio, 274

mounting file shares, 189–190
mount_point parameter, 250



348  MPP (massively parallel processing) systems  –  paginated reports (Power BI)

MPP (massively parallel processing) 
systems, 10, 32

MySQL
Azure databases for, 93–96
querying, 128

N
navigating

Azure Data Factory Studio, 256–258
Azure Databricks workspace 

UI, 245–247
Synapse Studio UI, 271–275

NCHAR data type, 121
network isolation

Azure Cosmos DB and, 165
Azure SQL Database and, 83–84
Azure SQL Managed Instance (Azure 

SQL MI) and, 77
Azure Storage security and, 202–203
solutions for, 70

network security group (NSG), 77
network-related issues, 113
nodes, slots on, 238
nonclustered indexes, 60
nonrelational data stores, 6–9
nonrelational databases

about, 140, 170–171
Azure Cosmos DB

about, 145–146
APIs, 150–153
high availability, 146–148
management tasks, 154–170
request units, 148–150

exam essentials, 171–173
features

about, 140–141
columnar database, 143–144
document database, 142–143
graph database, 144–145
key-value store, 141

review question answers, 333–334

review questions, 174–175
nonrepeatable reads, 52
NoSQL databases, 6–8
NOT NULL command, 122
notebook, 29
notebooks, creating, 249–251
NSG (network security group), 77
NVARCHAR data type, 121

O
obfuscation, 110–112
object storage, 9, 230, 231. See also file, 

object, and data lake storage
online analytical processing 

(OLAP) systems
about, 5
workload design considerations, 55–58

Online Services category (Power BI 
Desktop), 306

online transaction processing 
(OLTP) systems

about, 4–5
workload design considerations,  

52–55
OPENROWSET command, 289–291
OPENROWSET function, 287
open-source databases in Azure, 92–96
Orchestration button (Azure Data Factory 

Studio), 257
orchestration engine, 229–230
Other category (Power BI Desktop), 306
output, in ARM templates, 102

P
PaaS (Platform as a Service), 62
page blobs, 192
paginated reports (Power BI)

about, 320–323
pinning, 319



parameters  –  relational data structures  349

parameters, in ARM templates, 101
partition keys, 151
PBIX files, 315
performance tiers, in Azure Storage, 180
phantom reads, 52
pie charts, 38–39
pipelines

about, 252
creating with Copy Data 

Activity, 259–267
Synapse, 269

PITR (point-in-time restore), 89
Platform as a Service (PaaS), 62
point-in-time restore (PITR), 89
PolyBase, 282–285
PostgreSQL

Azure databases for, 95–96
querying, 128

Power BI
about, 269, 302–303, 324
exam essentials, 325
review question answers, 337
review questions, 326–327
working with

about, 303–304
dashboards, 318–320
interactive reports, 304–318
paginated reports, 320–323

Power BI Desktop, 302, 304–315
Power BI mobile app, 303
Power BI Q&A, 319
Power BI Report Builder, 303
Power BI Report Server, 303
Power BI report template (PBIT), 315
Power BI service

about, 302–303
publishing and sharing interactive 

reports with, 315–318
Power Platform category (Power BI 

Desktop), 306
Power Query, ADF and, 25

Power Query Editor, 309–311
predictive analytics, 33–34
Premium tier

for Azure Files, 187
for Azure SQL Database, 89

premium tier storage, 180
prescriptive analytics, 34
primary key, 58
PRIMARY KEY command, 122
private endpoint, 156
Private Link, 84
properties, 150
provisioned compute, 81
provisioned throughput, 149
public endpoint, 156
publishing interactive reports with Power 

BI service, 315–318

Q
query techniques, for SQL, 119–128
Quick Insights (Power BI), 319

R
RBAC (role-based access control)

about, 107–108
for Azure Cosmos DB, 166–167

Read Committed isolation level, 52
Read Committed Snapshot 

isolation level, 53
Read Uncommitted isolation level, 52
real-time message ingestion, 17, 231
Recents button (Azure Databricks),  

246
relational data structures

about, 58
functions, 61
indexes, 60
stored procedures, 60–61



350  relational databases  –  review questions

tables, 58
triggers, 61
views, 58–59

relational databases
about, 3–6, 129–130
Azure offerings

about, 61–62
Azure SQL, 63–90
Azure Synapse Analytics dedicated 

SQL pools, 90–92
open-source databases, 92–96

exam essentials, 130–131
features of

about, 51
design considerations, 51–61

management tasks for
about, 96
common connectivity 

issues, 113–115
database security, 106–112
deployment scripting and 

automation, 96–105
management tools, 115–119
migrating to Azure SQL, 105–106

query techniques for SQL
about, 119
Data Definition Language 

(DDL), 120–123
Data Manipulation Language 

(DML), 120, 123–124
MariaDB, 128
MySQL, 128
PostgreSQL, 128
T-SQL, 125–128

review question answers, 331–333
review questions, 132–138

RENAME command, 120
Repeatable Read isolation level, 53
replicated tables, 90, 277
Report view (Power BI Desktop), 305

reports. See also Power BI
analysis and, 230, 232
interactive

about, 304
creating with Power BI 

Desktop, 304–315
publishing and sharing with Power 

BI service, 315–318
pinning visuals in Power BI, 318
tools for, 35

Repos button (Azure Databricks), 246
request exceptions, as common 

connectivity issue for Azure Cosmos 
DB, 167–168

request units, Azure Cosmos DB 
and, 148–150

Request Units per second (RU/s),  
148–150

resource not found errors, as common 
connectivity issue for Azure 
Storage, 212–213

resource tokens, for Azure 
Cosmos DB, 167

resources, in ARM templates, 102
REST API, Azure Blob Storage, 195
result set caching, 278
review question answers

core data, 330–331
data warehouses, 335–337
file, object, and data lake 

storage, 334–335
nonrelational databases, 333–334
Power BI, 337
relational databases, 331–333

review questions
core data, 44–47
data warehouses, 295–300
file, object, and data lake 

storage, 221–223
nonrelational databases, 174–175



role-based access control (RBAC)  –  Sqlcmd  351

Power BI, 326–327
relational databases, 132–138

role-based access control (RBAC)
about, 107–108
for Azure Cosmos DB, 166–167

round-robin distributions, 90, 277
row-level security (RLS), 109–110

S
SaaS (Software as a Service), 62
SAS (shared access signature), 204–206
scale-out MPP architecture, 90
scaling

dedicated SQL pools, 279–281
PaaS Azure SQL in Azure Portal, 88

scatter plots, 39
schema, in ARM templates, 101
schema-on-write, 26
scripting, for deployment, 96–105
Search button (Azure Databricks), 246
second normal form (2NF), 54
security

Azure Cosmos DB, 165–167
Azure Storage

access management, 204–210
data encryption, 211
data protection, 211
network isolation, 202–203

of databases, 106–112
SELECT command, 123, 287
self-hosted integration runtimes, 253
semantic layer, 57–58
semi-structured data, 12–13
Serializable isolation level, 53
serverless compute, 81
serverless SQL pools, 31, 269, 287–291
serverless throughput, 149–150
service level objective (SLO), 277
service tiers

in Azure SQL Database, 81–83
in Azure SQL Managed Instance, 76–77

service-level agreement (SLA), for 
Azure SQL, 63

session consistency level, 147–148
shared access signature (SAS), 204–206
sharing interactive reports with Power BI 

service, 315–318
silver layer, in data transformation, 24
single database, 80
Single Node mode (Azure Databricks), 247
Single Server deployment, 92
SLO (service level objective), 277
slots, on nodes, 238
SMP (symmetric multiprocessing) 

systems, 10
Snapshot isolation level, 53
soft delete, 211
Software as a Service (SaaS), 62
source parameter, 250
Spark clusters, creating with Azure 

Databricks, 247–249
Spark Core API, 239
Spark driver, 238
Spark executor, 238
Spark RDD API, 239
Spark session, 238
SQL (Structured Query Language), 3
SQL Db Contributor role, 107
SQL Managed Instance 

Contributor role, 107
SQL scripts, 288–291
SQL Security Manager role, 107
SQL Server Contributor role, 107
SQL Server Integration Services (SSIS), 

ADF and, 25
SQL Server Management Studio 

(SSMS), 115–117
SQL Vulnerability Assessment, 112
Sqlcmd, 118–119



352  Standard mode (Azure Databricks)  –  vCore-based purchasing model

Standard mode (Azure Databricks), 247
Standard tier, of Azure SQL Database, 89
standard tier storage, 180
star schemas, 56–57
storage account access keys, 204
Storage Blob Data Contributor role, 207
Storage Blob Data Owner role, 207
Storage Blob Data Reader role, 207
Storage File Data SMB Share Elevated 

Contributor role, 207
Storage File Data SMB Share 

Reader role, 207
storage optimized VMs, 68
stored procedures, as relational data 

structures, 60–61
stream processing

about, 17–20, 231–232
modern data solutions with, 232–233

streaming data, as a tile type in Power BI 
dashboards, 319

strong consistency level, 147
structured data, 11–12
Structured Query Language (SQL), 3
symmetric multiprocessing (SMP) 

systems, 10
Synapse Link, 269
Synapse pipelines, 269
Synapse Studio, 268

T
Table or Matrix Wizard (Power BI), 321
tables

about, 36
as relational data structures, 58

tabular models, 312
TDE (Transparent Data Encryption), 110
text boxes, as a tile type in Power BI 

dashboards, 319

third normal form (3NF), 54
tiles, pinning in Power BI, 318
TLS (Transport Layer Security), 110
total cost of ownership (TCO), 61
Transaction Control Language (TCL), 3
Transaction optimized access tier, in Azure 

Files, 187
transactional processing systems, 4–5
transactional workloads, 226–227
Transform Data button (Azure Data 

Factory Studio), 257
transform phase, in extract

load, and transform (ELT), 30–32
transform, and load (ETL), 23–25

transformation activities, 230
transient fault errors, 115
Transparent Data Encryption (TDE), 110
Transport Layer Security (TLS), 110
triggers, as relational data structures, 61
TRUNCATE command, 120
T-SQL, querying Azure SQL with, 125–128

U
unauthorized requests, as common 

connectivity issue for Azure 
Cosmos DB, 168

UNIQUE command, 122
unstructured data, 13–14
UPDATE command, 124
uploading blobs, 194–195
User Defined Route (UDR), 77

V
VARCHAR data type, 121
variables, in ARM templates, 102
vCore-based purchasing model, 81, 92



videos  –  zone-redundant storage (ZRS)  353

videos, as a tile type in Power BI 
dashboards, 319

Viewer role (Power BI service), 315
views, as relational data structures, 58–59
virtual cluster, 77
virtual network firewall rules, 84
Visualizations pane (Power BI), 315
VNets, 70, 243

W
Web content, as a tile type in Power BI 

dashboards, 319
websites

AdventureWorksDW2019 sample 
database, 36

Power BI Desktop, 304
Power BI service, 316

Workspace button (Azure Databricks),  
246

workspaces, in Power BI service, 315–318

Y
Yet Another Resource Negotiator 

(YARN), 235

Z
zone redundancy, 90
zone-redundant storage (ZRS), 181







Online Test Bank
Register to gain one year of FREE access after activation to the online interactive 
test bank to help you study for your MC Azure Data Fundamentals certification 

exam—included with your purchase of this book! All of the chapter review  
questions and the practice tests in this book are included in the online test bank so 

you can practice in a timed and graded setting.

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1.	Go to www.wiley.com/go/sybextestprep.
2.	Select your book from the list.
3.	Complete the required registration information, including answering the 

security verification to prove book ownership. You will be emailed a pin code.
4.	Follow the directions in the email or go to www.wiley.com/go/sybextestprep.
5.	Find your book on that page and click the “Register or Login” link with it. Then 

enter the pin code you received and click the “Activate PIN” button.
6.	On the Create an Account or Login page, enter your username and password, 

and click Login or, if you don’t have an account already, create a new account.
7.	At this point, you should be in the test bank site with your new test bank listed 

at the top of the page. If you do not see it there, please refresh the page or log out 
and log back in.

http://www.wiley.com/go/sybextestprep
http://www.wiley.com/go/sybextestprep


WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	About the Author
	About the Technical Editor
	Contents at a Glance
	Contents
	Introduction
	Who Should Read This Book?
	What’s Included in the Book?
	Recommended Home Lab Setup

	Interactive Online Learning Environment and Test Bank
	DP-900 Exam Objectives
	Domain 1: Describe Core Data Components
	Subdomain 1a: Describe types of core data workloads
	Subdomain 1b: Describe data analytics core concepts

	Domain 2: Describe How to Work with Relational Data on Azure
	Subdomain 2a: Describe relational data workloads
	Subdomain 2b: Describe relational Azure data services
	Subdomain 2c: Identify basic management tasks for relational data
	Subdomain 2d: Describe query techniques for data using SQL language

	Domain 3: Describe How to Work with Nonrelational Data on Azure
	Subdomain 3a: Describe nonrelational data workloads
	Subdomain 3b: Describe nonrelational data offerings on Azure
	Subdomain 3c: Identify basic management tasks for nonrelational data

	Domain 4: Describe an Analytics Workload on Azure
	Subdomain 4a: Describe analytics workloads
	Subdomain 4b: Describe the components of a modern data warehouse
	Subdomain 4c: Describe data ingestion and processing on Azure
	Subdomain 4d: Describe data visualization in Microsoft Power BI

	Assessment Test
	Answers to the Assessment Test

	Chapter 1 Core Data Concepts
	Describe Types of Core Data Workloads
	Data Value
	Data Volume
	Data Variety
	Data Velocity

	Describe Data Analytics Core Concepts
	Data Processing Techniques
	Describe Analytics Techniques
	Describe Data Visualization Techniques

	Summary
	Exam Essentials
	Review Questions

	Chapter 2 Relational Databases in Azure
	Relational Database Features
	Relational Database Design Considerations

	Relational Database Offerings in Azure
	Azure SQL
	Azure Synapse Analytics Dedicated SQL Pools
	Open-Source Databases in Azure

	Management Tasks for Relational Databases in Azure
	Deployment Scripting and Automation
	Migrating to Azure SQL
	Database Security
	Common Connectivity Issues
	Management Tools

	Query Techniques for SQL
	DDL vs. DML Commands
	Query Relational Data in Azure SQL, MySQL, MariaDB, and PostgreSQL

	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Nonrelational Databases in Azure
	Nonrelational Database Features
	Key-Value Store
	Document Database
	Columnar Database
	Graph Database

	Azure Cosmos DB
	High Availability
	Request Units
	Azure Cosmos DB APIs

	Management Tasks for Azure Cosmos DB
	Deployment Options
	Azure Cosmos DB Security
	Azure Cosmos DB Common Connectivity Issues
	Management Tools

	Summary
	Exam Essentials
	Review Questions

	Chapter 4 File, Object, and Data Lake Storage
	File and Object Storage Features
	Azure Storage
	Performance Tiers
	Data Redundancy
	Deploying through the Azure Portal
	Azure Storage Services

	Management Tasks for Azure Storage
	Deployment Scripting and Automation
	Azure Storage Security
	Azure Storage Common Connectivity Issues
	Management Tools

	Summary
	Exam Essentials
	Review Questions

	Chapter 5 Modern Data Warehouses in Azure
	Analytical Workload Features
	Transactional vs. Analytical Workloads
	Data Processing Techniques

	Modern Data Warehouse Components
	Data Modeling Best Practices for Data Warehouses
	Azure Services for Modern Data Warehouses

	End-to-End Analytics with Azure Synapse Analytics
	Deploying an Azure Synapse Analytics Workspace
	Navigating the Synapse Studio UI
	Dedicated SQL Pools
	Serverless SQL Pools

	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Reporting with Power BI
	Power BI at a Glance
	Working with Power BI

	Summary
	Exam Essentials
	Review Questions

	Appendix Answers to the Review Questions
	Chapter 1: Core Data Concepts
	Chapter 2: Relational Databases in Azure
	Chapter 3: Nonrelational Databases in Azure
	Chapter 4: File, Object, and Data Lake Storage
	Chapter 5: Modern Data Warehouses in Azure
	Chapter 6: Reporting with Power BI

	Index
	EULA


STUDY
GUIDE
——






